Skip to main content

actin filaments

The Actin Superhighway

Posted on by

Actin Superhighway

Credit: Andrew Lombardo and David Warshaw, University of Vermont, Burlington

What looks like a traffic grid filled with roundabouts is nothing of the sort: It’s actually a peek inside a tiny microchamber that models a complex system operating in many of our cells. The system is a molecular transportation network made of the protein actin, and researchers have reconstructed it in the lab to study its rules of the road and, when things go wrong, how it can lead to molecular traffic accidents.

This 3D super-resolution image shows the model’s silicone beads (circles) positioned in a tiny microfluidic-chamber. Suspended from the beads are actin filaments that form some of the main cytoskeletal roadways in our cells. Interestingly, a single dye creates the photo’s beautiful colors, which arise from the different vertical dimensions of a microscopic image: 300 nanometers below the focus (red), at focus (green), and 300 nanometers above the focus (blue). When a component spans multiple dimensions—such as the spherical beads—all the colors of the rainbow are visible. The technique is called 3D stochastic optical reconstruction microscopy, or STORM [1].


The Beauty of Recycling

Posted on by

This image looks like a fireworks display, with multiple streaks of purple turning into red, and ending with dots of green.

Novel proteasome regulation image by Sigi Benjamin-Hong, Strang Laboratory of Apoptosis and Cancer Biology.

All cells recycle. Here, we see actin filaments (red) direct unwanted (malformed, damaged, or toxic) proteins to proteasomes (green). In these barrel-shaped compartments, proteins are chopped up into their basic building blocks, called amino acids, and recycled to make new healthy proteins.