neuropsychiatric disorders
The Amazing Brain: Tracking Molecular Events with Calling Cards
Posted on by Dr. Francis Collins
In days mostly gone by, it was fashionable in some circles for people to hand out calling cards to mark their arrival at special social events. This genteel human tradition is now being adapted to the lab to allow certain benign viruses to issue their own high-tech calling cards and mark their arrival at precise locations in the genome. These special locations show where there’s activity involving transcription factors, specialized proteins that switch genes on and off and help determine cell fate.
The idea is that myriad, well-placed calling cards can track brain development over time in mice and detect changes in transcription factor activity associated with certain neuropsychiatric disorders. This colorful image, which won first place in this year’s Show Us Your BRAINs! Photo and Video contest, provides a striking display of these calling cards in action in living brain tissue.
The image comes from Allen Yen, a PhD candidate in the lab of Joseph Dougherty, collaborating with the nearby lab of Rob Mitra. Both labs are located in the Washington University School of Medicine, St. Louis.
Yen and colleagues zoomed in on this section of mouse brain tissue under a microscope to capture dozens of detailed images that they then stitched together to create this high-resolution overview. The image shows neural cells (red) and cell nuclei (blue). But focus in on the neural cells (green) concentrated in the brain’s outer cortex (top) and hippocampus (two lobes in the upper center). They’ve been labelled with calling cards that were dropped off by adeno-associated virus [1].
Once dropped off, a calling card doesn’t bear a pretentious name or title. Rather, the calling card, is a small mobile snippet of DNA called a transposon. It gets dropped off with the other essential component of the technology: a specialized enzyme called a transposase, which the researchers fuse to one of many specific transcription factors of interest.
Each time one of these transcription factors of interest binds DNA to help turn a gene on or off, the attached transposase “grabs” a transposon calling card and inserts it into the genome. As a result, it leaves behind a permanent record of the interaction.
What’s also nice is the calling cards are programmed to give away their general locations. That’s because they encode a fluorescent marker (in this image, it’s a green fluorescent protein). In fact, Yen and colleagues could look under a microscope and tell from all the green that their calling card technology was in place and working as intended.
The final step, though, was to find out precisely where in the genome those calling cards had been left. For this, the researchers used next-generation sequencing to produce a cumulative history and map of each and every calling card dropped off in the genome.
These comprehensive maps allow them to identify important DNA-protein binding events well after the fact. This innovative technology also enables scientists to attribute past molecular interactions with observable developmental outcomes in a way that isn’t otherwise possible.
While the Mitra and Dougherty labs continue to improve upon this technology, it’s already readily adaptable to answer many important questions about the brain and brain disorders. In fact, Yen is now applying the technology to study neurodevelopment in mouse models of neuropsychiatric disorders, specifically autism spectrum disorder (ASD) [2]. This calling card technology also is available for any lab to deploy for studying a transcription factor of interest.
This research is supported by the Brain Research through Advancing Innovative Neurotechnologies® (BRAIN) Initiative. One of the major goals of BRAIN Initiative is to accelerate the development and application of innovative technologies to gain new understanding of the brain. This award-winning image is certainly a prime example of striving to meet this goal. I’ll look forward to what these calling cards will tell us in the future about ASD and other important neurodevelopmental conditions affecting the brain.
References:
[1] A viral toolkit for recording transcription factor-DNA interactions in live mouse tissues. Cammack AJ, Moudgil A, Chen J, Vasek MJ, Shabsovich M, McCullough K, Yen A, Lagunas T, Maloney SE, He J, Chen X, Hooda M, Wilkinson MN, Miller TM, Mitra RD, Dougherty JD. Proc Natl Acad Sci U S A. 2020 May 5;117(18):10003-10014.
[2] A MYT1L Syndrome mouse model recapitulates patient phenotypes and reveals altered brain development due to disrupted neuronal maturation. Jiayang Chen, Mary E. Lambo, Xia Ge, Joshua T. Dearborn, Yating Liu, Katherine B. McCullough, Raylynn G. Swift, Dora R. Tabachnick, Lucy Tian, Kevin Noguchi, Joel R. Garbow, John N. Constantino. bioRxiv. May 27, 2021.
Links:
Brain Research through Advancing Innovative Neurotechnologies® (BRAIN) Initiative (NIH)
Autism Spectrum Disorder (National Institute of Mental Health/NIH)
Dougherty Lab (Washington University School of Medicine, St. Louis)
Mitra Lab (Washington University School of Medicine)
Show Us Your BRAINs! Photo and Video Contest (BRAIN Initiative/NIH)
NIH Support: National Institute of Neurological Disorders and Stroke; National Institute of Mental Health; National Center for Advancing Translational Sciences; National Human Genome Research Institute; National Institute of General Medical Sciences
Connecting Senescent Cells to Obesity and Anxiety
Posted on by Dr. Francis Collins

Obesity—which affects about 4 in 10 U.S. adults—increases the risk for lots of human health problems: diabetes, heart disease, certain cancers, and even anxiety and depression [1]. It’s also been associated with increased accumulation of senescent cells, which are older cells that resist death even as they lose the ability to grow and divide.
Now, NIH-funded researchers have found that when lean mice are fed a high-fat diet that makes them obese, they also have more senescent cells in their brain and show more anxious behaviors [2]. The researchers could reduce this obesity-driven anxiety using so-called senolytic drugs that cleared away the senescent cells. These findings are among the first to provide proof-of-concept that senolytics may offer a new avenue for treating an array of neuropsychiatric disorders, in addition to many other chronic conditions.
As we age, senescent cells accumulate in many parts of the body [3]. But cells can also enter a senescent state at any point in life in response to major stresses, such as DNA damage or chronic infection. Studies suggest that having lots of senescent cells around, especially later in life, is associated with a wide variety of chronic conditions, including osteoporosis, osteoarthritis, vascular disease, and general frailty.
Senescent cells display a “zombie”-like behavior known as a senescence-associated secretory phenotype (SASP). In this death-defying, zombie-like state, the cells ramp up their release of proteins, bioactive lipids, DNA, and other factors that, like a zombie virus, induce nearby healthy cells to join in the dysfunction.
In fact, the team behind this latest study, led by James Kirkland, Mayo Clinic, Rochester, MN, recently showed that transplanting small numbers of senescent cells into young mice is enough to cause them weakness, frailty, and persistent health problems. Those ill effects were alleviated with a senolytic cocktail, including dasatinib (a leukemia drug) and quercetin (a plant compound). This drug cocktail overrode the zombie-like SASP phenotype and forced the senescent cells to undergo programmed cell death and finally die.
Previous research indicates that senescent cells also accumulate in obesity, and not just in adipose tissues. Moreover, recent studies have linked senescent cells in the brain to neurodegenerative conditions, including Alzheimer’s disease, and showed in mice that dasatinib and quercetin helps to alleviate neurodegenerative disease [4,5]. In the latest paper, published in the journal Cell Metabolism, Kirkland and colleagues asked whether senescent cells in the brain also could explain anxiety-like behavior in obesity.
The answer appears to be “yes.” The researchers showed that lean mice, if allowed to feast on a high-fat diet, grew obese and became more anxious about exploring open spaces and elevated mazes.
The researchers also found that the obese mice had an increase in senescent cells in the white matter near the lateral ventricle, a part of the brain that offers a pathway for cerebrospinal fluid. Those senescent cells also contained an excessive amount of fat. Could senolytic drugs clear those cells and make the obesity-related anxiety go away?
To find out, the researchers treated lean and obese mice with a senolytic drug for 10 weeks. The treatment didn’t lead to any changes in body weight. But, as senescent cells were cleared from their brains, the obese mice showed a significant reduction in their anxiety-related behavior. They lost their anxiety without losing the weight!
More preclinical study is needed to understand more precisely how the treatment works. But, it’s worth noting that clinical trials testing a variety of senolytic drugs are already underway for many conditions associated with senescent cells, including chronic kidney disease [6,7], frailty [8], and premature aging associated with bone marrow transplant [9].
As a matter of fact, just after the Cell Metabolism paper came out, Kirkland’s team published encouraging though preliminary, first-in-human results of the previously mentioned senolytic drug dasatinib in 14 people with age-related idiopathic pulmonary fibrosis, a condition in which lung tissue becomes damaged and scarred [10]. Caution is warranted as we learn more about the associated risks and benefits, but it’s safe to say we’ll be hearing a lot more about senolytics in the years ahead.
References:
[1] Adult obesity facts (Centers for Disease Control and Prevention)
[2] Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Ogrodnik M et al. Cell Metabolism. 2019 Jan 3.
[3] Aging, Cell Senescence, and Chronic Disease: Emerging Therapeutic Strategies. Tchkonia T, Kirkland JL. JAMA. 2018 Oct 2;320(13):1319-1320.
[4] Tau protein aggregation is associated with cellular senescence in the brain. Musi N, Valentine JM, Sickora KR, Baeuerle E, Thompson CS, Shen Q, Orr ME. Aging Cell. 2018 Dec;17(6):e12840.
[5] Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ. Nature. 2018 Oct;562(7728):578-582.
[6] Inflammation and Stem Cells in Diabetic and Chronic Kidney Disease. ClinicalTrials.gov, Sep 2018.
[7] Senescence in Chronic Kidney Disease. Clinicaltrials.gov, Sep 2018.
[8] Alleviation by Fisetin of Frailty, Inflammation, and Related Measures in Older Adults (AFFIRM-LITE). Clinicaltrials.gov, Dec 2018.
[9] Hematopoietic Stem Cell Transplant Survivors Study (HTSS Study). Clinicaltrials.gov, Sep 2018.
[10] Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. Justice JN, Nambiar AN, Tchkonia T, LeBrasseur K, Pascual R, Hashmi SK, Prata L, Masternak MM, Kritchevsky SB, Musi N, Kirkland JL. EBioMed. 5 Jan. 2019. [Epub ahead of print]
Links:
Healthy Aging (National Institute on Aging/NIH)
Video: Vail Scientific Summit James Kirkland Interview (Youtube)
James Kirkland (Mayo Clinic, Rochester, MN)
NIH Support: National Institute on Aging; National Institute of Neurological Disorders and Stroke
Cool Videos: Flashes of Neuronal Brilliance
Posted on by Dr. Francis Collins
When you have a bright idea or suddenly understand something, you might say that a light bulb just went on in your head. But, as the flashing lights of this very cool video show, the brain’s signaling cells, called neurons, continually switch on and off in response to a wide range of factors, simple or sublime.
The technology used to produce this video—a recent winner in the Federation of American Societies for Experimental Biology’s BioArt contest—takes advantage of the fact that whenever a neuron is activated, levels of calcium increase inside the cell. To capture that activity, graduate student Caitlin Vander Weele in Kay M. Tye’s lab at the Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, engineered neurons in a mouse’s brain to produce a bright fluorescent signal whenever calcium increases. Consequently, each time a neuron was activated, the fluorescent indicator lit up and the changes were detected with a miniature microscope. The brighter the flash, the greater the activity!