Skip to main content

virology

AIDS Vaccine Research: Better By Design?

Posted on by Dr. Francis Collins

OD-GT8 60mer

Caption: eOD-GT8 60mer nanoparticle based on the engineered protein eOD-GT8. Yellow shows where eOD-GT8 binds antibodies; white is the protein surface outside the binding site; light blue indicates the sugars attached to the protein; dark blue is the nanoparticle core to which eOD-GT8 has been fused.
Credit: Sergey Menis and William Schief, The Scripps Research Institute

A while ago, I highlighted a promising new approach for designing a vaccine against the human immunodeficiency virus (HIV), the cause of AIDS. This strategy would “take the immune system to school” and teach it a series of lessons using several vaccine injections—each consisting of a different HIV proteins designed to push the immune system, step by step, toward the production of protective antibodies capable of fending off virtually all HIV strains. But a big unanswered question was whether most people actually possess the specific type of precursor immune cells that that can be taught to produce antibodies that kill HIV.

Now, we may have the answer [1]. In a study published in the journal Science, a research team, partly supported by NIH, found that the majority of people do indeed have these precursor cells. While the total number of these cells in each person may be low, this may be all that’s needed for the immune system to recognize a vaccine. Based in part on these findings, researchers plan to launch a Phase 1 clinical trial in human volunteers to see if their latest engineered protein can find these precursor cells and begin coaxing them through the complicated process of producing protective antibodies.


Zika and Birth Defects: The Evidence Mounts

Posted on by Dr. Francis Collins

Zike virus infection

Caption: Human neural progenitor cells (gray) infected with Zika virus (green) increased the enzyme caspase-3 (red), suggesting increased cell death.
Credit: Sarah C. Ogden, Florida State University, Tallahassee

Recently, public health officials have raised major concerns over the disturbing spread of the mosquito-borne Zika virus among people living in and traveling to many parts of Central and South America [1]. While the symptoms of Zika infection are typically mild, grave concerns have arisen about its potential impact during pregnancy. The concerns stem from the unusual number of births of children with microcephaly, a very serious condition characterized by a small head and damaged brain, coinciding with the spread of Zika virus. Now, two new studies strengthen the connection between Zika and an array of birth defects, including, but not limited to, microcephaly.

In the first study, NIH-funded laboratory researchers show that Zika virus can infect and kill human neural progenitor cells [2]. Those progenitor cells give rise to the cerebral cortex, a portion of the brain often affected in children with microcephaly. The second study, involving a small cohort of women diagnosed with Zika virus during their pregnancies in Rio de Janeiro, Brazil, suggests that the attack rate is disturbingly high, and microcephaly is just one of many risks to the developing fetus. [3]


Gene Expression Test Aims to Reduce Antibiotic Overuse

Posted on by Dr. Francis Collins

Doctor with ER patient

Caption: Duke physician-scientist Ephraim Tsalik assesses a patient for a respiratory infection.
Credit: Shawn Rocco/Duke Health

Without doubt, antibiotic drugs have saved hundreds of millions of lives from bacterial infections that would have otherwise been fatal. But their inappropriate use has led to the rise of antibiotic-resistant superbugs, which now infect at least 2 million Americans every year and are responsible for thousands of deaths [1]. I’ve just come from the World Economic Forum in Davos, Switzerland, where concerns about antibiotic resistance and overuse was a topic of conversation. In fact, some of the world’s biggest pharmaceutical companies issued a joint declaration at the forum, calling on governments and industry to work together to combat this growing public health threat [2].

Many people who go to the doctor suffering from respiratory symptoms expect to be given a prescription for antibiotics. Not only do such antibiotics often fail to help, they serve to fuel the development of antibiotic-resistant superbugs [3]. That’s because antibiotics are only useful in treating respiratory illnesses caused by bacteria, and have no impact on those caused by viruses (which are frequent in the wintertime). So, I’m pleased to report that a research team, partially supported by NIH, recently made progress toward a simple blood test that analyzes patterns of gene expression to determine if a patient’s respiratory symptoms likely stem from a bacterial infection, viral infection, or no infection at all.

In contrast to standard tests that look for signs of a specific infectious agent—respiratory syncytial virus (RSV) or the influenza virus, for instance—the new strategy casts a wide net that takes into account changes in the patterns of gene expression in the bloodstream, which differ depending on whether a person is fighting off a bacterial or a viral infection. As reported in Science Translational Medicine [4], Geoffrey Ginsburg, Christopher Woods, and Ephraim Tsalik of Duke University’s Center for Applied Genomics and Precision Medicine, Durham, NC, and their colleagues collected blood samples from 273 people who came to the emergency room (ER) with signs of acute respiratory illness. Standard diagnostic tests showed that 70 patients arrived in the ER with bacterial infections and 115 were battling viruses. Another 88 patients had no signs of infection, with symptoms traced instead to other health conditions.


Zika Virus: An Emerging Health Threat

Posted on by Dr. Francis Collins

Credit: Kraemer et al. eLife 2015;4:e08347

For decades, the mosquito-transmitted Zika virus was mainly seen in equatorial regions of Africa and Asia, where it caused a mild, flu-like illness and rash in some people. About 10 years ago, the picture began to expand with the appearance of Zika outbreaks in the Pacific islands. Then, last spring, Zika popped up in South America, where it has so far infected more than 1 million Brazilians and been tentatively linked to a steep increase in the number of babies born with microcephaly, a very serious condition characterized by a small head and brain [1]. And Zika’s disturbing march may not stop there.

In a new study in the journal The Lancet, infectious disease modelers calculate that Zika virus has the potential to spread across warmer and wetter parts of the Western Hemisphere as local mosquitoes pick up the virus from infected travelers and then spread the virus to other people [2]. The study suggests that Zika virus could eventually reach regions of the United States in which 60 percent of our population lives. This highlights the need for NIH and its partners in the public and private sectors to intensify research on Zika virus and to look for new ways to treat the disease and prevent its spread.


Toward an AIDS-Free Generation: Can Antibodies Help?

Posted on by Dr. Francis Collins

Virus and antibody bound to virus

Caption: Left: Human Immunodeficiency Virus (HIV); Right: VRC01 antibody (blue and green) binding to HIV (grey and red). The VRC01-HIV binding (red) takes place where the virus attaches to primary immune cells.
Credits: C. Bickel, Science Translational Medicine; National Institute of Allergy and Infectious Diseases

This year, an estimated 50,000 Americans will learn they have been newly infected with the human immunodeficiency virus (HIV), which causes AIDS [1]. The good news is that if these people are diagnosed and receive antiretroviral therapy (ART) promptly, most will enjoy a near-normal lifespan.The bad news is that, barring any further research advances, they will have to take ART every day for the rest of their lives, a regimen that’s inconvenient and may cause unpleasant side effects. Clearly, a new generation of safe, effective, and longer-lasting treatments to keep HIV in check is very much needed.

That’s why I’m encouraged to see some early signs of progress emerging from a small, NIH-supported clinical trial of an HIV-neutralizing antibody. While the results need to be replicated in much larger studies, researchers discovered that a single infusion of the antibody reduced levels of HIV in the bloodstreams of several HIV-infected individuals by more than 10-fold [2]. Furthermore, the study found that this antibody—known as a broadly neutralizing antibody (bNAb) for its ability to defend against a wide range of HIV strains—is well tolerated and remained in the participants’ bloodstreams for weeks.


LabTV: Curious About Drug Resistance of Hepatitis C Virus

Posted on by Dr. Francis Collins

Ashley Matthew

As long as she can remember, Ashley Matthew wanted to be a medical doctor. She took every opportunity to pursue her dream, including shadowing physicians to learn more about what a career in health care is really like. But, as Matthew explains in today’s LabTV video, she also became attracted to the idea of doing research because of her affinity for solving problems and “figuring things out.”

So, Matthew decided to give biomedical research a try, landing a spot in an undergraduate summer program sponsored by the University of Massachusetts. Ten weeks later, she was convinced that her future in medicine just had to include a research component. That’s why Matthew is now well on her way as an M.D./Ph.D. student at the University of Massachusetts Medical School, Worcester, where she works in the lab of Celia Schiffer.


Protecting Kids: Developing a Vaccine for Respiratory Syncytial Virus

Posted on by Dr. Francis Collins

Baby at the Doctor's OfficeVaccines are one of biomedicine’s most powerful and successful tools for protecting against infectious diseases. While we currently have safe and effective vaccines to prevent measles, mumps, and a great many other common childhood diseases, we still lack a vaccine to guard against respiratory syncytial virus (RSV)—a leading cause of pneumonia among infants and young children.

Each year, more than 2 million U.S. children under the age of 5 require medical care for pneumonia and other potentially life-threatening lower respiratory infections caused by RSV [1,2]. Worldwide, the situation is even worse, with more than 30 million infections estimated to occur annually, most among kids in developing countries, where as many as 200,000 deaths may result [3]. So, I’m pleased to report some significant progress in biomedical research’s long battle against RSV: encouraging early results from a clinical trial of an experimental vaccine specifically designed to outwit the virus.


Snapshots of Life: New Target for Herpes Treatment?

Posted on by Dr. Francis Collins


HSV-1Something about this image reminds me of that wacky and infectious old song: “It was a one-eyed, one-horned, flyin’ purple people eater …” Of course, this purple blob isn’t a people eater, but it does happen to be infectious. What you see here is a 3D rendering of a protein that the herpes simplex virus 1 (HSV-1)—one of two herpes viruses that cause genital herpes and cold sores—depends upon to infect human cells.

When a cell is infected with HSV-1, the virus inserts its DNA into human cells, periodically coming out of dormancy to make more copies of itself. However, errors sometimes occur when the DNA is replicated. When that happens, an HSV-1 protein, dubbed infected cell protein 8 (ICP8), stitches broken pieces of DNA back together. That’s what you see depicted in this schematic, which shows two single strands of DNA (red with multicolor bases) entering an ICP8 complex (purplish blue) to be reannealed into DNA’s familiar double-stranded helix (red).


Creative Minds: Teaming Math and Science for an HIV Cure

Posted on by Dr. Francis Collins

Alison Hill

Alison Hill

You may have heard about young mathematicians who’ve helped to design cooler cars, smarter phones, and even more successful sports teams. But do you know about the young mathematician who is helping to find a cure for the estimated 35 million people worldwide infected with the human immunodeficiency virus (HIV)? If not, I’d like to introduce you to Alison Hill, a mathematical biologist at Harvard University, Cambridge, MA.

Recognized this year by Forbes Magazine’s 30 Under 30 as one of the most important young innovators in healthcare, Hill is teaming with clinicians to develop sophisticated mathematical tools to predict which experimental drugs might work to clear HIV from the body once and for all. While current treatments are able to reduce some patients’ HIV burden to very low or even undetectable levels, it is eradication of this viral reservoir that stands between such people living with a serious, but controllable chronic disease and actually being cured.


Previous Page