Protein Links Gut Microbes, Biological Clocks, and Weight Gain

Fat calls with and without NFIL3

Caption: Lipids (red) inside mouse intestinal cells with and without NFIL3.
Credit: Lora V. Hooper, University of Texas Southwestern Medical Center, Dallas

The American epidemic of obesity is a major public health concern, and keeping off the extra pounds is a concern for many of us. Yet it can also be a real challenge for people who may eat normally but get their days and nights mixed up, including night-shift workers and those who regularly travel overseas. Why is that?

The most obvious reason is the odd hours throw a person’s 24-hour biological clock—and metabolism—out of sync. But an NIH-funded team of researchers has new evidence in mice to suggest the answer could go deeper to include the trillions of microbes that live in our guts—and, more specifically, the way they “talk” to intestinal cells. Their studies suggest that what gut microbes “say” influences the activity of a key clock-driven protein called NFIL3, which can set intestinal cells up to absorb and store more fat from the diet while operating at hours that might run counter to our fixed biological clocks.

Continue reading

Explaining the Traveler’s First-Night Sleep Problem

Sleepy in the morning

Stock photo/Wavebreakmedia Ltd

This past weekend, I attended a scientific meeting in New York. As often seems to happen to me in a hotel, I tossed and turned and woke up feeling not very rested. The second night I did a bit better. Why is this? Using advanced neuroimaging techniques to study volunteers in a sleep lab, NIH-funded researchers have come up with a biological explanation for this phenomenon, known as “the first-night effect.”

As it turns out, the first night when a person goes to sleep in a new place, a portion of the left hemisphere of his or her brain remains unusually active, apparently to stay alert for any signs of danger. The new findings not only provide important insights into the function of the human brain, they also suggest methods to prevent the first-night effect and thereby help travelers like me in our ongoing quest to get a good night’s sleep.

Continue reading

Zika Virus: An Emerging Health Threat

Credit: Kraemer et al. eLife 2015;4:e08347

For decades, the mosquito-transmitted Zika virus was mainly seen in equatorial regions of Africa and Asia, where it caused a mild, flu-like illness and rash in some people. About 10 years ago, the picture began to expand with the appearance of Zika outbreaks in the Pacific islands. Then, last spring, Zika popped up in South America, where it has so far infected more than 1 million Brazilians and been tentatively linked to a steep increase in the number of babies born with microcephaly, a very serious condition characterized by a small head and brain [1]. And Zika’s disturbing march may not stop there.

In a new study in the journal The Lancet, infectious disease modelers calculate that Zika virus has the potential to spread across warmer and wetter parts of the Western Hemisphere as local mosquitoes pick up the virus from infected travelers and then spread the virus to other people [2]. The study suggests that Zika virus could eventually reach regions of the United States in which 60 percent of our population lives. This highlights the need for NIH and its partners in the public and private sectors to intensify research on Zika virus and to look for new ways to treat the disease and prevent its spread.

Continue reading