Skip to main content

intestine

Targeting the Microbiome to Treat Malnutrition

Posted on by

Caption: A Bangladeshi mother and child in the Nutritional Rehabilitation Unit.
Credit: International Centre for Diarrhoeal Disease Research, Bangladesh

A few years ago, researchers discovered that abnormalities in microbial communities, or microbiomes, in the intestine appear to contribute to childhood malnutrition. Now comes word that this discovery is being translated into action, with a new study showing that foods formulated to repair the “gut microbiome” may help malnourished kids rebuild their health [1].

In a month-long clinical trial in Bangladesh, 63 children received either regular foods to treat malnutrition or alternative formulations for needed calories and nutrition that also encouraged growth of beneficial microbes in the intestines. The kids who ate the microbiome-friendly diets showed improvements in their microbiome, which helps to extract and metabolize nutrients in our food to help the body grow. They also had significant improvements in key blood proteins associated with bone growth, brain development, immunity, and metabolism; those who ate standard therapeutic food did not experience the same benefit.

Globally, malnutrition affects an estimated 238 million children under the age 5, stunting their normal growth, compromising their health, and limiting their mental development [2]. Malnutrition can arise not only from a shortage of food but from dietary imbalances that don’t satisfy the body’s need for essential nutrients. Far too often, especially in impoverished areas, the condition can turn extremely severe and deadly. And the long term effects on intellectual development can limit the ability of a country’s citizens to lift themselves out of poverty.

Jeffrey Gordon, Washington University School of Medicine in St. Louis, and his NIH-supported research team have spent decades studying what constitutes a normal microbiome and how changes can affect health and disease. Their seminal studies have revealed that severely malnourished kids have “immature” microbiomes that don’t develop in the intestine like the microbial communities seen in well nourished, healthy children of the same age.

Gordon and team have also found that this microbial immaturity doesn’t resolve when kids consume the usual supplemental foods [3]. In another study, they turned to mice raised under sterile conditions and with no microbes of their own to demonstrate this cause and effect. The researchers colonized the intestines of the germ-free mice with microbes from malnourished children, and the rodents developed similar abnormalities in weight gain, bone growth, and metabolism [4].

All of this evidence raised a vital question: Could the right combination of foods “mature” the microbiome and help to steer malnourished children toward a healthier state?

To get the answer, Gordon and his colleagues at the International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh, led by Tahmeed Ahmed, first had to formulate the right, microbiome-friendly food supplements, and that led to some interesting science. They carefully characterized over time the immature microbiomes found in Bangladeshi children treated for severe malnutrition. This allowed them to test their new method for analyzing how individual microbial species fluctuate over time and in relationship to one another in the intestine [5]. The team then paired up these data with measurements of a set of more than 1,300 blood proteins from the children that provide “readouts” of their biological state.

Their investigation identified a network of 15 bacterial species that consistently interact in the gut microbiomes of Bangladeshi children. This network became their means to characterize sensitively and accurately the development of a child’s microbiome and/or its relative state of repair.

Next, they turned to mice colonized with the same collections of microbes found in the intestines of the Bangladeshi children. Gordon’s team then tinkered with the animals’ diets in search of ingredients commonly consumed by young children in Bangladesh that also appeared to encourage a healthier, more mature microbiome. They did similar studies in young pigs, whose digestive and immune systems more closely resemble humans.

The Gordon team settled on three candidate microbiome-friendly formulations. Two included chickpea flour, soy flour, peanut flour, and banana at different concentrations; one of these two also included milk powder. The third combined chickpea flour and soy flour. All three contained similar amounts of protein, fat, and calories.

The researchers then launched a randomized, controlled clinical trial with children from a year to 18 months old with moderate acute malnutrition. These young children were enrolled into one of four treatment groups, each including 14 to 17 kids. Three groups received one of the newly formulated foods. The fourth group received standard rice-and-lentil-based meals.

The children received these supplemental meals twice a day for four weeks at the International Centre for Diarrhoeal Disease Research followed by two-weeks of observation. Mothers were encouraged throughout the study to continue breastfeeding their children.

The formulation containing chickpea, soy, peanut, and banana, but no milk powder, stood out above the rest in the study. Children taking this supplement showed a dramatic shift toward a healthier state as measured by those more than 1,300 blood proteins. Their gut microbiomes also resembled those of healthy children their age.

Their new findings published in the journal Science offer the first evidence that a therapeutic food, developed to support the growth and development of a healthy microbiome, might come with added benefits for children suffering from malnutrition. Importantly, the researchers took great care to design the supplements with foods that are readily available, affordable, culturally acceptable, and palatable for young children in Bangladesh.

A month isn’t nearly long enough to see how the new foods would help children grow and recover over time. So, the researchers are now conducting a much larger study of their leading supplement in children with histories of malnutrition, to explore its longer-term health effects for them and their microbiomes. The hope is that these new foods and others adapted for use around the world soon will help many more kids grow up to be healthy adults.

References:

[1] Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Gehrig JL, Venkatesh S, Chang HW, Hibberd MC, Kung VL, Cheng J, Chen RY, Subramanian S, Cowardin CA, Meier MF, O’Donnell D, Talcott M, Spears LD, Semenkovich CF, Henrissat B, Giannone RJ, Hettich RL, Ilkayeva O, Muehlbauer M, Newgard CB, Sawyer C, Head RD, Rodionov DA, Arzamasov AA, Leyn SA, Osterman AL, Hossain MI, Islam M, Choudhury N, Sarker SA, Huq S, Mahmud I, Mostafa I, Mahfuz M, Barratt MJ, Ahmed T, Gordon JI. Science. 2019 Jul 12;365(6449).

[2] Childhood Malnutrition. World Health Organization

[3] Persistent gut microbiota immaturity in malnourished Bangladeshi children. Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, Benezra A, DeStefano J, Meier MF, Muegge BD, Barratt MJ, VanArendonk LG, Zhang Q, Province MA, Petri WA Jr, Ahmed T, Gordon JI. Nature. 2014 Jun 19;510(7505):417-21.

[4] Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, Subramanian S, Manary MJ, Trehan I, Jorgensen JM, Fan YM, Henrissat B, Leyn SA, Rodionov DA, Osterman AL, Maleta KM, Newgard CB, Ashorn P, Dewey KG, Gordon JI. Science. 2016 Feb 19;351(6275).

[5] A sparse covarying unit that describes healthy and impaired human gut microbiota development. Raman AS, Gehrig JL, Venkatesh S, Chang HW, Hibberd MC, Subramanian S, Kang G, Bessong PO, Lima AAM, Kosek MN, Petri WA Jr, Rodionov DA, Arzamasov AA, Leyn SA, Osterman AL, Huq S, Mostafa I, Islam M, Mahfuz M, Haque R, Ahmed T, Barratt MJ, Gordon JI. Science. 2019 Jul 12;365(6449).

Links:

Childhood Nutrition Facts (Centers for Disease Control and Prevention)

Gordon Lab (Washington University School of Medicine in St. Louis)

NIH Human Microbiome Project

International Centre for Diarrhoeal Disease Research (Dhaka, Bangladesh)

NIH Support: National Institute of Diabetes and Digestive and Kidney Diseases; National Institute of General Medical Sciences; National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Center for Advancing Translational Sciences; National Cancer Institute


Creative Minds: Giving Bacteria Needles to Fight Intestinal Disease

Posted on by

Cammie Lesser

Cammie Lesser

For Salmonella and many other disease-causing bacteria that find their way into our bodies, infection begins with a poke. That’s because these bad bugs are equipped with a needle-like protein filament that punctures the outer membrane of human cells and then, like a syringe, injects dozens of toxic proteins that help them replicate.

Cammie Lesser at Massachusetts General Hospital and Harvard Medical School, Cambridge, and her colleagues are now on a mission to bioengineer strains of bacteria that don’t cause disease to make these same syringes, called type III secretion systems. The goal is to use such “good” bacteria to deliver therapeutic molecules, rather than toxins, to human cells. Their first target is the gastrointestinal tract, where they hope to knock out hard-to-beat bacterial infections or to relieve the chronic inflammation that comes with inflammatory bowel disease (IBD).


Protein Links Gut Microbes, Biological Clocks, and Weight Gain

Posted on by

Fat calls with and without NFIL3

Caption: Lipids (red) inside mouse intestinal cells with and without NFIL3.
Credit: Lora V. Hooper, University of Texas Southwestern Medical Center, Dallas

The American epidemic of obesity is a major public health concern, and keeping off the extra pounds is a concern for many of us. Yet it can also be a real challenge for people who may eat normally but get their days and nights mixed up, including night-shift workers and those who regularly travel overseas. Why is that?

The most obvious reason is the odd hours throw a person’s 24-hour biological clock—and metabolism—out of sync. But an NIH-funded team of researchers has new evidence in mice to suggest the answer could go deeper to include the trillions of microbes that live in our guts—and, more specifically, the way they “talk” to intestinal cells. Their studies suggest that what gut microbes “say” influences the activity of a key clock-driven protein called NFIL3, which can set intestinal cells up to absorb and store more fat from the diet while operating at hours that might run counter to our fixed biological clocks.


Simplifying HIV Treatment: A Surprising New Lead

Posted on by

CD4+ cells in the gut

Caption: PET/CT imaging reveals a surprisingly high concentration (yellow, light green) of key immune cells called CD4 T cells in the colon (left) of an SIV-infected animal that received antibody infusions along with antiviral treatment. Fewer immune cells were found in the small intestine (right), while the liver (lower left) shows a high level of non-specific signal (orange).
Credit: Byrareddy et al., Science (2016).

The surprising results of an animal study are raising hopes for a far simpler treatment regimen for people infected with the AIDS-causing human immunodeficiency virus (HIV). Currently, HIV-infected individuals can live a near normal life span if, every day, they take a complex combination of drugs called antiretroviral therapy (ART). The bad news is if they stop ART, the small amounts of HIV that still lurk in their bodies can bounce back and infect key immune cells, called CD4 T cells, resulting in life-threatening suppression of their immune systems.

Now, a study of rhesus macaques infected with a close relative of HIV, the simian immunodeficiency virus (SIV), suggests there might be a new therapeutic option that works by a mechanism that has researchers both excited and baffled [1]. By teaming ART with a designer antibody used to treat people with severe bowel disease, NIH-funded researchers report that they have been able to keep SIV in check in macaques for at least two years after ART is stopped. More research is needed to figure out exactly how the new strategy works, and whether it would also work for humans infected with HIV. However, the findings suggest there may be a way to achieve lasting remission from HIV without the risks, costs, and inconvenience associated with a daily regimen of drugs.


Snapshots of Life: Tales from the (Intestinal) Crypt!

Posted on by

Caption: This “spooky” video ends with a scientific image of intestinal crypts (blue and green) plus organoids made from cultured crypt stem cells (pink). 

As Halloween approaches, some of you might be thinking about cueing up the old TV series “Tales from the Crypt” and diving into its Vault of Horror for a few hours. But today I’d like to share the story of a quite different and not nearly so scary kind of crypt: the crypts of Lieberkühn, more commonly called intestinal crypts.

This confocal micrograph depicts a row of such crypts (marked in blue and green) lining a mouse colon. In mice, as well as in humans, the intestines contain millions of crypts, each of which has about a half-dozen stem cells at its base that are capable of regenerating the various types of tissues that make up these tiny glands. What makes my tale of the crypt particularly interesting are the oval structures (pink), which are organoids that have been engineered from cultured crypt stem cells and then transplanted into a mouse model. If you look at the organoids closely, you’ll see Paneth cells (aqua blue), which are immune cells that support the stem cells and protect the intestines from bacterial invasion.

A winner in the 2016 “Image Awards” at the Koch Institute Public Galleries, Massachusetts Institute of Technology (MIT), Cambridge, this image was snapped by Jatin Roper, a physician-scientist in the lab of Omer Yilmaz, with the help of his MIT collaborator Tuomas Tammela. Roper and his colleagues have been making crypt organoids for a few years by placing the stem cells in a special 3D chamber, where they are bathed with the right protein growth factors at the right time to spur them to differentiate into the various types of cells found in a crypt.

Once the organoids are developmentally complete, Roper can inject them into mice and watch them take up residence. Then he can begin planning experiments.

For example, Roper’s group is now considering using the organoids to examine how high-fat and low-calorie diets affect intestinal function in mice. Another possibility is to use similar organoids to monitor the effect of aging on the colon or to test which of a wide array of targeted therapies might work best for a particular individual with colon cancer.

Links:

Video: Gut Reaction (Jatin Roper)

Jatin Roper (Tufts Medical Center, Boston)

Omer Yilmaz (Massachusetts Institute of Technology, Cambridge)

The Koch Institute Galleries (MIT)

NIH Support: National Cancer Institute; National Institute on Aging


Next Page