Autism Spectrum Disorder: Progress Toward Earlier Diagnosis

Sleeping baby

Stockbyte

Research shows that the roots of autism spectrum disorder (ASD) generally start early—most likely in the womb. That’s one more reason, on top of a large number of epidemiological studies, why current claims about the role of vaccines in causing autism can’t be right. But how early is ASD detectable? It’s a critical question, since early intervention has been shown to help limit the effects of autism. The problem is there’s currently no reliable way to detect ASD until around 18–24 months, when the social deficits and repetitive behaviors associated with the condition begin to appear.

Several months ago, an NIH-funded team offered promising evidence that it may be possible to detect ASD in high-risk 1-year-olds by shifting attention from how kids act to how their brains have grown [1]. Now, new evidence from that same team suggests that neurological signs of ASD might be detectable even earlier.

Continue reading

Big Data and Imaging Analysis Yields High-Res Brain Map

The HCP’s multi-modal cortical parcellation

Caption: Map of 180 areas in the left and right hemispheres of the cerebral cortex.
Credit: Matthew F. Glasser, David C. Van Essen, Washington University Medical School, Saint Louis, Missouri

Neuroscientists have been working for a long time to figure out how the human brain works, and that has led many through the years to attempt to map its various regions and create a detailed atlas of their complex geography and functions. While great progress has been made in recent years, existing brain maps have remained relatively blurry and incomplete, reflecting only limited aspects of brain structure or function and typically in just a few people.

In a study reported recently in the journal Nature, an NIH-funded team of researchers has begun to bring this map of the human brain into much sharper focus [1]. By combining multiple types of cutting-edge brain imaging data from more than 200 healthy young men and women, the researchers were able to subdivide the cerebral cortex, the brain’s outer layer, into 180 specific areas in each hemisphere. Remarkably, almost 100 of those areas had never before been described. This new high-resolution brain map will advance fundamental understanding of the human brain and will help to bring greater precision to the diagnosis and treatment of many brain disorders.

Continue reading

Explaining the Traveler’s First-Night Sleep Problem

Sleepy in the morning

Stock photo/Wavebreakmedia Ltd

This past weekend, I attended a scientific meeting in New York. As often seems to happen to me in a hotel, I tossed and turned and woke up feeling not very rested. The second night I did a bit better. Why is this? Using advanced neuroimaging techniques to study volunteers in a sleep lab, NIH-funded researchers have come up with a biological explanation for this phenomenon, known as “the first-night effect.”

As it turns out, the first night when a person goes to sleep in a new place, a portion of the left hemisphere of his or her brain remains unusually active, apparently to stay alert for any signs of danger. The new findings not only provide important insights into the function of the human brain, they also suggest methods to prevent the first-night effect and thereby help travelers like me in our ongoing quest to get a good night’s sleep.

Continue reading

Neuroscience: The Power of Curiosity to Inspire Learning

Snowflakes activating the brainWhen our curiosity is piqued, learning can be a snap and recalling the new information comes effortlessly. But when it comes to things we don’t care about—the recipe to that “delicious” holiday fruitcake or, if we’re not really into football, the results of this year’s San Diego County Credit Union Poinsettia Bowl—the new information rarely sticks.

To probe why this might be so, neuroscientists Charan Ranganath and Matthias Gruber, and psychologist Bernard Gelman, all at the University of California at Davis, devised a multi-step experiment to explore which regions of the brain are activated when we are curious, and how curiosity enhances our ability to learn and remember.

Continue reading