Caption:PET/CT imaging reveals a surprisingly high concentration (yellow, light green) of key immune cells called CD4 T cells in the colon (left) of an SIV-infected animal that received antibody infusions along with antiviral treatment. Fewer immune cells were found in the small intestine (right), while the liver (lower left) shows a high level of non-specific signal (orange). Credit: Byrareddy et al., Science (2016).
The surprising results of an animal study are raising hopes for a far simpler treatment regimen for people infected with the AIDS-causing human immunodeficiency virus (HIV). Currently, HIV-infected individuals can live a near normal life span if, every day, they take a complex combination of drugs called antiretroviral therapy (ART). The bad news is if they stop ART, the small amounts of HIV that still lurk in their bodies can bounce back and infect key immune cells, called CD4 T cells, resulting in life-threatening suppression of their immune systems.
Now, a study of rhesus macaques infected with a close relative of HIV, the simian immunodeficiency virus (SIV), suggests there might be a new therapeutic option that works by a mechanism that has researchers both excited and baffled [1]. By teaming ART with a designer antibody used to treat people with severe bowel disease, NIH-funded researchers report that they have been able to keep SIV in check in macaques for at least two years after ART is stopped. More research is needed to figure out exactly how the new strategy works, and whether it would also work for humans infected with HIV. However, the findings suggest there may be a way to achieve lasting remission from HIV without the risks, costs, and inconvenience associated with a daily regimen of drugs.
Caption: eOD-GT8 60mer nanoparticle based on the engineered protein eOD-GT8. Yellow shows where eOD-GT8 binds antibodies; white is the protein surface outside the binding site; light blue indicates the sugars attached to the protein; dark blue is the nanoparticle core to which eOD-GT8 has been fused. Credit: Sergey Menis and William Schief, The Scripps Research Institute
A while ago, I highlighted a promising new approach for designing a vaccine against the human immunodeficiency virus (HIV), the cause of AIDS. This strategy would “take the immune system to school” and teach it a series of lessons using several vaccine injections—each consisting of a different HIV proteins designed to push the immune system, step by step, toward the production of protective antibodies capable of fending off virtually all HIV strains. But a big unanswered question was whether most people actually possess the specific type of precursor immune cells that that can be taught to produce antibodies that kill HIV.
Now, we may have the answer [1]. In a study published in the journal Science, a research team, partly supported by NIH, found that the majority of people do indeed have these precursor cells. While the total number of these cells in each person may be low, this may be all that’s needed for the immune system to recognize a vaccine. Based in part on these findings, researchers plan to launch a Phase 1 clinical trial in human volunteers to see if their latest engineered protein can find these precursor cells and begin coaxing them through the complicated process of producing protective antibodies.
Caption: Left: Human Immunodeficiency Virus (HIV); Right: VRC01 antibody (blue and green) binding to HIV (grey and red). The VRC01-HIV binding (red) takes place where the virus attaches to primary immune cells. Credits: C. Bickel, Science Translational Medicine; National Institute of Allergy and Infectious Diseases
This year, an estimated 50,000 Americans will learn they have been newly infected with the human immunodeficiency virus (HIV), which causes AIDS [1]. The good news is that if these people are diagnosed and receive antiretroviral therapy (ART) promptly, most will enjoy a near-normal lifespan.The bad news is that, barring any further research advances, they will have to take ART every day for the rest of their lives, a regimen that’s inconvenient and may cause unpleasant side effects. Clearly, a new generation of safe, effective, and longer-lasting treatments to keep HIV in check is very much needed.
That’s why I’m encouraged to see some early signs of progress emerging from a small, NIH-supported clinical trial of an HIV-neutralizing antibody. While the results need to be replicated in much larger studies, researchers discovered that a single infusion of the antibody reduced levels of HIV in the bloodstreams of several HIV-infected individuals by more than 10-fold [2]. Furthermore, the study found that this antibody—known as a broadly neutralizing antibody (bNAb) for its ability to defend against a wide range of HIV strains—is well tolerated and remained in the participants’ bloodstreams for weeks.
Caption: Scanning electron micrograph of an HIV-infected immune cell. Credit: National Institute of Allergy and Infectious Diseases, NIH
For many of the viruses that make people sick—think measles, smallpox, or polio—vaccines that deliver weakened or killed virus encourage the immune system to produce antibodies that afford near complete protection in the event of an exposure. But that simple and straightforward approach doesn’t work in the case of human immunodeficiency virus (HIV), the virus that causes AIDS. In part, that’s because our immune system is poorly equipped to recognize HIV and mount an attack against the infection. To make matters worse, HIV has a habit of quickly mutating as it multiplies.That means, in order for an HIV vaccine to be effective, it must induce antibodies capable of fighting against a wide range of HIV strains. For all these reasons, the three decades of effort to develop an HIV vaccine have turned out to be enormously challenging and frustrating.
But now I’m pleased to report that NIH-funded scientists have taken some encouraging strides down this path. In two papers published in Science [1, 2] and one in Cell [3], researchers presented results of animal studies that support what most vaccine experts have come to suspect: the immune system is in fact capable of producing the kind of antibodies that should be protective against HIV, but it takes more than one step to get there. In effect, a successful vaccine strategy has to “take the immune system to school,” and it requires more than one lesson to pass the final exam. Specifically, what’s needed seems to be a series of shots—each consisting of a different engineered protein designed to push the immune system, step by step, toward the production of protective antibodies that will work against virtually all HIV strains.