Random Mutations Play Major Role in Cancer

Cancer OddsWe humans are wired to search for a causative agent when something bad happens. When someone develops cancer, we seek a reason. Maybe cancer runs in the family. Or perhaps the person smoked, never wore sunscreen, or drank too much alcohol. At some level, those are reasonable assumptions, as genes, lifestyle, and environment do play important roles in cancer. But a new study claims that the reason why many people get cancer is simply just bad luck.

This bad luck occurs during the normal process of cell division that is essential to helping our bodies grow and remain healthy. Every time a cell divides, its 6 billion letters of DNA are copied, with a new copy going to each daughter cell. Typos inevitably occur during this duplication process, and the cell’s DNA proofreading mechanisms usually catch and correct these typos. However, every once in a while, a typo slips through—and if that misspelling happens to occur in certain key areas of the genome, it can drive a cell onto a pathway of uncontrolled growth that leads to cancer. In fact, according to a team of NIH-funded researchers, nearly two-thirds of DNA typos in human cancers arise in this random way.

The latest findings should help to reassure people being treated for many forms of cancer that they likely couldn’t have prevented their illness. They also serve as an important reminder that, in addition to working on better strategies for prevention, cancer researchers must continue to pursue innovative technologies for early detection and treatment.

Continue reading

LabTV: Curious About Cancer Patients’ Quality of Life

Katie MartinezKatie Martinez struggled mightily with math in high school, but now she’s eagerly pursuing a biomedical research career that’s all about crunching numbers. So, what happened to Katie? Cancer is what happened, specifically being diagnosed with breast cancer when she was just a few years out of college.

While growing up in Alexandria, VA, Martinez had little interest in science or math, doing so poorly that she even had to enroll in some remedial classes. So, it wasn’t surprising that she chose to major in history when she went off to Carnegie Mellon University in Pittsburgh. There, Martinez eventually became intrigued by the many ways in which “built environments”—the places and circumstances in which people live—can affect the health of both individuals and communities. Her interest in these social determinants of health led her to pursue a Master’s degree in Public Health at the University of California, Los Angeles.

Continue reading

Creative Minds: Teaming Math and Science for an HIV Cure

Alison Hill

Alison Hill

You may have heard about young mathematicians who’ve helped to design cooler cars, smarter phones, and even more successful sports teams. But do you know about the young mathematician who is helping to find a cure for the estimated 35 million people worldwide infected with the human immunodeficiency virus (HIV)? If not, I’d like to introduce you to Alison Hill, a mathematical biologist at Harvard University, Cambridge, MA.

Recognized this year by Forbes Magazine’s 30 Under 30 as one of the most important young innovators in healthcare, Hill is teaming with clinicians to develop sophisticated mathematical tools to predict which experimental drugs might work to clear HIV from the body once and for all. While current treatments are able to reduce some patients’ HIV burden to very low or even undetectable levels, it is eradication of this viral reservoir that stands between such people living with a serious, but controllable chronic disease and actually being cured.

Continue reading