Skip to main content

clinical trial

Does Gastric Bypass Reduce Cardiovascular Complications of Diabetes?

Posted on by Dr. Francis Collins

Doctor with patient

Thinkstock/IPGGutenbergUKLtd

For obese people with diabetes, doctors have increasingly been offering gastric bypass surgery as a way to lose weight and control blood glucose levels. Short-term results are often impressive, but questions have remained about the long-term benefits of such operations. Now, a large, international study has some answers.

Soon after gastric bypass surgery, about 50 percent of folks not only lost weight but they also showed well-controlled blood glucose, cholesterol, and blood pressure. The good news is that five years later about half of those who originally showed those broad benefits of surgery maintained that healthy profile. The not-so-good news is that the other half, while they generally continued to sustain weight loss and better glucose control, began to show signs of increasing risk for cardiovascular complications.


Nanodiamonds Shine in Root Canal Study

Posted on by Dr. Francis Collins

Nanodiamonds

Caption: An artistic rendering of nanodiamonds
Credit: Ho Lab

When the time comes to get relief from a dental problem, we are all glad that dentistry has come so far—much of the progress based on research supported by NIH’s National Institute of Dental and Craniofacial Research. Still, almost no one looks forward to getting a root canal. Not only can the dental procedure be uncomfortable and costly, there’s also a risk of failure due to infection or other complications. But some NIH-supported researchers have now come up with what may prove to be a dazzling strategy for reducing that risk: nanodiamonds!

That’s right, these researchers decided to add tiny diamonds—so small that millions could fit on the head of the pin—to the standard filler that dentists use to seal off a tooth’s root. Not only are these nanodiamonds extremely strong, they have unique properties that make them very attractive vehicles for delivering drugs, including antimicrobials that help fight infections of the sealed root canal.


Precision Medicine: Making Warfarin Safer

Posted on by Dr. Francis Collins

Blood sample for PT INR test, diagnosis for coagulation disease

Caption: Finding the right dose of the drug warfarin can be tricky, even with this standard test to measure how fast a person’s blood clots.
Credit: Thinkstock/jarun011

Every year, thousands of older Americans require emergency treatment to stop bleeding caused by taking warfarin, a frequently prescribed blood-thinning pill. My own mother received this drug in her later years, and her doctors encountered significant challenges getting the dose right. The problem is too much warfarin causes potentially serious bleeding, while too little leaves those who need the drug vulnerable to developing life-threatening clots in their legs or heart. The difference between too little and too much is distressingly small. But what if before writing a prescription, doctors could test for known genetic markers to help them gauge the amount of warfarin that a person should take?

Such tests have been available to doctors and patients for a few years, but they have not been widely used. The recent results of a national clinical trial offer some of the most convincing evidence that it’s time for that to change. In this study of 1,650 older adults undergoing elective hip or knee surgery, patients whose genetic makeup was used to help determine their dose of warfarin were less likely to suffer adverse events, including major bleeding. This trial marks an encouraging success story for the emerging field of pharmacogenomics, the study of how the variations in our genes affect our responses to medicines.


Protecting Kids: Developing a Vaccine for Respiratory Syncytial Virus

Posted on by Dr. Francis Collins

Baby at the Doctor's OfficeVaccines are one of biomedicine’s most powerful and successful tools for protecting against infectious diseases. While we currently have safe and effective vaccines to prevent measles, mumps, and a great many other common childhood diseases, we still lack a vaccine to guard against respiratory syncytial virus (RSV)—a leading cause of pneumonia among infants and young children.

Each year, more than 2 million U.S. children under the age of 5 require medical care for pneumonia and other potentially life-threatening lower respiratory infections caused by RSV [1,2]. Worldwide, the situation is even worse, with more than 30 million infections estimated to occur annually, most among kids in developing countries, where as many as 200,000 deaths may result [3]. So, I’m pleased to report some significant progress in biomedical research’s long battle against RSV: encouraging early results from a clinical trial of an experimental vaccine specifically designed to outwit the virus.


Team Approach Helps Teen Depression

Posted on by Dr. Francis Collins

Team of Support

Stock photo

As many as one in five U.S. teenagers experience an episode of major depression by the time they turn 18. Sadly, depression among teens often goes unrecognized, increasing the risk of suicide, substance abuse, and many other problems. Even among those who are diagnosed, few receive proper treatment. But now there’s a ray of hope from a new NIH-funded study that’s found success using a team approach that pairs depressed teens and their parents with a counselor [1].

Faced with a shortage of psychiatrists who specialize in child mental health, a multidisciplinary team from the Seattle Children’s Research Institute, University of Washington School of Medicine, and Group Health in Seattle decided to use a strategy called “collaborative care” to treat depressed teenagers. There are more than 70 clinical trials showing that team-based care approaches work well for adults with depression, but there were only two such previous studies in teens—and results were mixed.


PCORnet: Meeting Clinical Trials’ Need for Speed

Posted on by Dr. Francis Collins

Doctor with an iPad-type device talking with a patient

iStock

Comparative effectiveness research (CER) studies aim to determine what works (and what doesn’t) in the real world of clinical medicine. Such studies are essential to identify the safest, most effective ways of detecting, treating, and preventing disease. Yet, both patients and researchers are often frustrated by the agonizingly slow pace at which many CER studies proceed. Under our current system, it’s often a long, costly process to identify trial sites, recruit volunteers, run the study, compile data, and, finally, analyze the results. The time is ripe to revamp the way we do this.


Bracing Successfully Treats Spine Curvature in Adolescents

Posted on by Dr. Francis Collins

BrAISTWhen the results of a clinical trial are remarkably good, or bad, we end the trial early to translate the findings into action. Today I’m happy to share exciting news about a trial that was stopped early because of a good outcome. This was an NIH-funded clinical trial that investigated the benefits of wearing a back brace for tweens and teens who suffer from a spine curvature called adolescent idiopathic scoliosis (AIS), which affects up to 3% of children and teens between ages 10 and 16. The trial revealed, overwhelmingly, that such a brace stops the progression of curves before they require surgery [1].


Clinical Studies in Your Own Backyard

Posted on by Dr. Francis Collins

Map of the U.S. indicating number of active clinical trials by state

Map of clinical trials in the U.S. as of Feb. 7, 2013
Source: ClinicalTrials.gov

NIH conducts clinical research studies for many diseases and conditions, including cancer, Alzheimer’s disease, allergy and infectious diseases, and neurological disorders. What’s more, this work is being carried out in every state of the nation, as you can see from this interactive map showing clinical studies supported by NIH and others.

Before you start exploring this map, let’s take a moment to review the basics. A clinical study involves research using human volunteers that is intended to add to medical knowledge. One common type of clinical study, called a clinical research trial, looks at the safety and effectiveness of new ways to prevent, detect, or treat diseases. Treatments might be new drugs or new combinations of drugs, new surgical procedures or devices, or new ways to use existing treatments.

If you’re interested in taking part in a clinical study, a terrific place to start is ClinicalTrials.gov, which is a service of NIH. This searchable database lists more than 139,000 federally and privately funded clinical studies in the United States, as well as around the world. For each study, the database provides information on the purpose of the research, who may participate, where the study is being conducted, and who to call or e-mail for more details. To help you in your quest, we’ve pulled together some handy search tips, along with some real-life stories from both volunteers and researchers.

Finally, please keep in mind that ClinicalTrials.gov is just a starting point. Any information that you find there should be used conjunction with advice from your doctor or another health care professional.


A Brain Pacemaker for Alzheimer’s Disease?

Posted on by Dr. Francis Collins

As many of you know, Alzheimer’s is an absolutely devastating neurodegenerative disease. It destroys the lives of loved ones with the disease, takes a terrible toll on family and friends who care for them, and costs, for patient care alone, an estimated $200 billion a year.

Illustration of a device implanted near the heart and a wire that leads to the brain.
The implanted wires stimulate the fornix, one of the first regions destroyed by Alzheimer’s. Credit: Functional Neuromodulation

Alzheimer’s is the most common form of dementia, robbing those it affects of their memory, their ability to learn and think, and their personality. It worsens over time. People forget recent events, and gradually lose the ability to manage their daily lives and care for themselves. It currently affects an estimated 5.1 million Americans; this number is expected to rise to somewhere between 11 and 16 million by 2050 unless treatments can be found in the meantime.

There’s no cure for Alzheimer’s disease (AD), but biomedical researchers are testing new drugs and biochemical approaches, treatments that could stem and possibly reverse the course of the disease. They are also exploring how conditions like obesity and diabetes—which are at epidemic levels in the U.S. and worldwide—play a role. I want to tell you about a new NIH-funded experimental approach that was tried for the first time in the U.S. in November.

Neurosurgeons at Johns Hopkins Hospital, in Baltimore, MD, implanted a ‘pacemaker’ in the brain of a patient with mild AD. You are probably familiar with the concept of a pacemaker that stabilizes heart rhythms. The implanted device sends electrical pulses to the heart muscle, resetting a normal heartbeat. In some ways, this pacemaker for AD is similar. It, too, sends electrical pulses, but targets a region of the brain called the fornix—a bundle of 1.2 million axons that normally serves as a superhighway for learning, emotion, and forming memories. The fornix is one of the first regions to be destroyed by Alzheimer’s.


Previous Page