Skip to main content

DNA sequencing

Taking a New Look at Artificial Sweeteners

Posted on by Dr. Francis Collins

Packets of artificial sweetenersDiet sodas and other treats sweetened with artificial sweeteners are often viewed as guilt-free pleasures. Because such foods are usually lower in calories than those containing natural sugars, many have considered them a good option for people who are trying to lose weight or keep their blood glucose levels in check. But some surprising new research suggests that artificial sweeteners might actually do the opposite, by changing the microbes living in our intestines [1].

To explore the impact of various kinds of sweeteners on the zillions of microbes living in the human intestine (referred to as the gut microbiome), an Israeli research team first turned to mice. One group of mice was given water that contained one of two natural sugars: glucose or sucrose; the other group received water that contained one of three artificial sweeteners: saccharin (the main ingredient in Sweet’N Low®), sucralose (Splenda®), or aspartame (Equal®, Nutrasweet®). Both groups ate a diet of normal mouse chow.


New Strategies in Battle Against Antibiotic Resistance

Posted on by Drs. Anthony S. Fauci and Francis S. Collins

Klebsiella pneumoniae Bacteria
Caption: Colorized scanning-electron micrograph showing carbapenem-resistant Klebsiella pneumoniae interacting with a human white blood cell.
Credit: National Institute of Allergy and Infectious Diseases, NIH

Over the past year, the problem of antibiotic resistance has received considerable attention, with concerns being raised by scientists, clinicians, public health officials, and many others around the globe. These bacteria are found not only in hospitals, but in a wide range of community settings. In the United States alone, antibiotic-resistant bacteria cause roughly 2 million infections per year, and 23,000 deaths [1].

In light of such daunting statistics, the need for action at the highest levels is clear, as is demonstrated by an Executive Order issued today by the President. Fighting antibiotic resistance is both a public health and national security priority. The White House has joined together with leaders from government, academia, and public health to create a multi-pronged approach to combat antibiotic resistance. Two high-level reports released today—the White House’s National Strategy for Combating Antibiotic-Resistant Bacteria (CARB) and the complementary President’s Council of Advisors on Science and Technology (PCAST) Report to the President on Combating Antibiotic Resistance—outline a series of bold steps aimed at addressing this growing public health threat.


Secrets of a Supercentenarian’s Genome

Posted on by Dr. Francis Collins

Hennie with her family

Caption: Hendrikje van Andel-Schipper (2nd from the left) in her youth. She was born June 29, 1890, premature and so tiny that no one thought she would survive. However, she lived to be 115.
Credit: Ramon Schipper

Not too long before 115-year-old Hendrikje “Hennie” van Andel-Schipper died in 2005, this Dutch “supercentenarian” attributed her remarkable longevity to eating raw salted herring, to drinking orange juice, and—with a twinkle in her eye—“to breathing.”

Because very few humans have survived as long Hennie, it’s only logical to ask whether some of the secrets to her impressive lifespan might lie in her genes. And we find ourselves in a great position to explore such questions, thanks to the convergence of two things: recent advances in DNA sequencing technology, and Hennie’s generous decision, made when she was a mere 82 years old, to donate her body to science upon her death.


DNA Analysis Finds New Target for Diabetes Drugs

Posted on by Dr. Francis Collins

ATCG's with a silhouette of people
Credit: Jane Ades, National Human Genome Research Institute, NIH

Type 2 diabetes (T2D) tends to run in families, and over the last five years the application of genomic technologies has led to discovery of more than 60 specific DNA variants that contribute to risk. My own research laboratory at NIH has played a significant role in this adventure. But this approach doesn’t just provide predictions of risk; it may also provide a path to developing new ways of treating and preventing this serious, chronic disease that affects about 26 million Americans.

In an unprecedented effort aimed at finding and validating new therapeutic targets for T2D, an international team led by NIH-funded researchers recently analyzed the DNA of about 150,000 people across five different ancestry groups. Their work uncovered a set of 12 rare mutations in the SLC30A8 gene that appear to provide powerful protection against T2D, reducing risk about 65 percent—even in the face of obesity and other risk factors for the disease [1].


Rare Disease Sleuths Uncover New Clues to Stroke

Posted on by Dr. Francis Collins

Drawing of a brain section with an inflamed blood vessel

Caption: A variation in the gene that codes for a key blood vessel enzyme makes children prone to fevers, rash, and strokes.
Credit: Jonathan Bailey, National Human Genome Research Institute, NIH

A medical mystery that began when a 3-year-old girl came to the NIH Clinical Center here in Bethesda, MD, a decade ago has just been solved. The findings not only promise to help children suffering from a devastating rare disease, but to advance our overall understanding of stroke and other blood vessel disorders.

When researchers first met the little girl, they were baffled. She had a most unusual—and unexplained—constellation of symptoms: recurring fevers, rashes, and strokes, which, sadly, had left her severely disabled. Researchers thought the cause probably wasn’t genetic, because none of the girl’s family members were affected, plus they hadn’t seen other children with similar problems. While they searched for clues, they treated the girl with immunosuppressive drugs to reduce blood vessel inflammation and thereby lower the chance of future strokes.


Different Cancers Can Share Genetic Signatures

Posted on by Dr. Francis Collins

Cancer types floating over a cell with unraveling DNA

NIH-funded researchers analyzed the DNA of these cancers.

Cancer is a disease of the genome. It arises when genes involved in promoting or suppressing cell growth sustain mutations that disturb the normal stop and go signals.  There are more than 100 different types of cancer, most of which derive their names and current treatment based on their tissue of origin—breast, colon, or brain, for example. But because of advances in DNA sequencing and analysis, that soon may be about to change.

Using data generated through The Cancer Genome Atlas, NIH-funded researchers recently compared the genomic fingerprints of tumor samples from nearly 3,300 patients with 12 types of cancer: acute myeloid leukemia, bladder, brain (glioblastoma multiforme), breast, colon, endometrial, head and neck, kidney, lung (adenocarcinoma and squamous cell carcinoma), ovarian, and rectal. Confirming but greatly extending what smaller studies have shown, the researchers discovered that even when cancers originate from vastly different tissues, they can show similar features at the DNA level


Previous Page