Sequencing Human Genome with Pocket-Sized “Nanopore” Device

MinION sequencing device

Caption: MinION sequencing device plugged into a laptop/Oxford Nanopore Technologies

It’s hard to believe, but it’s been almost 15 years since we successfully completed the Human Genome Project, ahead of schedule and under budget. I was proud to stand with my international colleagues in a celebration at the Library of Congress on April 14, 2003 (which happens to be my birthday), to announce that we had stitched together the very first reference sequence of the human genome at a total cost of about $400 million. As remarkable as that achievement was, it was just the beginning of our ongoing effort to understand the human genome, and to use that understanding to improve human health.

That first reference human genome was sequenced using automated machines that were the size of small phone booths.  Since then, breathtaking progress has been made in developing innovative technologies that have made DNA sequencing far easier, faster, and more affordable. Now, a report in Nature Biotechnology highlights the latest advance: the sequencing and assembly of a human genome using a pocket-sized device [1]. It was generated using several “nanopore” devices that can be purchased online with a “starter kit” for just $1,000. In fact, this new genome sequence—completed in a matter of weeks—includes some notoriously hard-to-sequence stretches of DNA, filling several key gaps in our original reference genome.

Continue reading

Secrets of a Supercentenarian’s Genome

Hennie with her family

Caption: Hendrikje van Andel-Schipper (2nd from the left) in her youth. She was born June 29, 1890, premature and so tiny that no one thought she would survive. However, she lived to be 115.
Credit: Ramon Schipper

Not too long before 115-year-old Hendrikje “Hennie” van Andel-Schipper died in 2005, this Dutch “supercentenarian” attributed her remarkable longevity to eating raw salted herring, to drinking orange juice, and—with a twinkle in her eye—“to breathing.”

Because very few humans have survived as long Hennie, it’s only logical to ask whether some of the secrets to her impressive lifespan might lie in her genes. And we find ourselves in a great position to explore such questions, thanks to the convergence of two things: recent advances in DNA sequencing technology, and Hennie’s generous decision, made when she was a mere 82 years old, to donate her body to science upon her death.

Continue reading

New Prize Celebrates Biology Breakthroughs

Faces of the NIH grantees receiving the Breakthrough Prize in the Life Sciences (as listed below)

NIH grantees receiving the Breakthrough Prize in the Life Sciences
(in order as listed below)

The brand new $3 million Breakthrough Prize in the Life Sciences [1] delivered a very nice reward and well deserved recognition to eleven exceptionally creative scientists who have devoted their careers to biology and medicine. And, with five awards to be given each year, I hope this inspires other life scientists to embark on innovative and high-risk endeavors.

For this inaugural round, I’m proud to say that nine of the eleven winners were NIH grant recipients—some for more than three decades. Now, you may not have heard of most of these scientists. Quite frankly, that’s a shame. These folks have discovered fundamental principles of biology—everything from cancer causing genes to techniques for creating stem cells. These discoveries have boosted our understanding of health and disease, and led to the development of many drugs and therapies.

So these individuals really should be household names—and more of that kind of recognition would be a good thing to inspire youth to explore careers in science. In the United States, virtually everyone can list names of multiple movie stars and athletes, but two-thirds of Americans can’t name a single living scientist [2].

Continue reading