Cool Videos: Myotonic Dystrophy

Myotonic Dystrophy Video screenshot

Today, I’d like to share a video that tells the inspirational story of two young Massachusetts Institute of Technology (MIT) researchers who are taking aim at a genetic disease that has touched both of their lives. Called myotonic dystrophy (DM), the disease is the most common form of muscular dystrophy in adults and causes a wide variety of health problems—including muscle wasting and weakness, irregular heartbeats, and profound fatigue.

If you’d like a few more details before or after watching these scientists’ video, here’s their description of their work:  “Eric Wang started his lab at MIT in 2013 through receiving an NIH Early Independence Award. Learn about the path that led him to study myotonic dystrophy, a disease that affects his family. Eric’s team of researchers includes Ona McConnell, an avid field hockey goalie who is affected by myotonic dystrophy herself. Determined to make a difference, Eric and Ona hope to inspire others in their efforts to better understand and treat this disease.”

Links: Continue reading

Cool Videos: Metabolomics

Metabolomics video screenshot

Today’s feature in my Cool Video series is a scientific film noir from the University of Florida in Gainesville. Channeling Humphrey Bogart’s hard-boiled approach to detective work, the protagonist of this video is tracking down metabolites—molecules involved in biological mysteries with more twists and turns than “The Maltese Falcon.”

If you’d like a few more details before or after watching the video, here’s how the scientists themselves describe their project: “Inside our cells, chemical heroes, victims, and villains leave behind clues about our health. Meet Dr. Art Edison, one of many metabolomics PIs who are on the case. Their quest? To tail and fingerprint small molecules, called metabolites, which result from the chemical processes that fuel and sustain life. Metabolites can shed light on the state of health, nutrition, or disease in a living thing—whether human, animal, or plant. Funded by National Institutes of Health grant U24DK097209, the University of Florida Southeast Center for Integrated Metabolomics is sleuthing through these cellular secrets.”

Continue reading

Eradicating Ebola: In U.S. Biomedical Research, We Trust

BSL-4 environment

Caption: Researcher inside a biosafety level 4 laboratory, which provides the necessary precautions for working with the Ebola virus.
Credit: National Institute of Allergy and Infectious Diseases, NIH

As the outbreak of Ebola Virus Disease continues to spread in West Africa, now affecting four countries in the region, I am reminded how fragile life is—and how important the role of the National Institutes of Health (NIH) is in protecting it.

NIH research has helped us understand how Ebola initially infects people and how it spreads from person to person. Preventing this spread is currently our greatest defense in fighting it. Through research, we know that the Ebola virus is transmitted through direct contact with bodily fluids and is not transmitted through the air like the flu. We also know the symptoms of Ebola and the period during which they can appear. This knowledge has informed how we manage the disease. We know that the virus can be contained and eradicated with early identification, isolation, strict infection control, and meticulous medical care.

Continue reading

Snapshots of Life: Seeing, from Eye to Brain

Credit: Xueting Luo and Kevin Park, University of Miami

Fasten your seat belts! We’re going to fly through the brain of a mouse. Our tour guide is Kevin Park, an NIH-funded neuroscientist at the University of Miami, who has developed a unique method to visualize neurons in an intact brain. He’s going to give us a rare close-up of the retinal ganglion cells that carry information from the eye to the brain, where the light signals are decoded and translated.

To make this movie, Park has injected a fluorescent dye into the mouse eye; it is taken up by the retinal cells and traces out the nerve pathways from the optic nerve into the brain.

Continue reading

Cancer Cachexia: Might This Molecule Hold the Key?

PTHrP

Caption: Structure of parathyroid hormone-related protein (PTHrP), which has been implicated in cancer-related cachexia.
Source: The Protein Data Bank

No matter how much high-calorie food they eat or nutritionally fortified shakes they drink, many people with cancer just can’t seem to maintain their body weight. They lose muscle and fat, sometimes becoming so weak that they can’t tolerate further treatment. Called cachexia, this progressive wasting syndrome has long troubled patients and their families, as well as baffled scientists searching for ways to treat or perhaps even prevent it.

Some previous studies [1-3] have observed that humans and mice suffering from cachexia have “activated” brown fat. This type of fat, as I explained in a previous post, has the ability to convert its chemical energy into heat to keep the body warm. Intrigued by these hints, a team led by Bruce Spiegelman of the Dana-Farber Cancer Institute and Harvard Medical School in Boston recently decided to explore whether tumor cells might secrete molecules that spur similar brown fat-like activity, causing a gradual depletion of the body’s energy stores.

Continue reading