Cool Videos: HIV in Action

HIV Video

There aren’t too many molecular biologists who have spent a 3-month stint in Hollywood. But Janet Iwasa is not your average molecular biologist. After earning her PhD in 2006, she took a break from the lab to take a crash course in animation techniques at the Gnomon School of Visual Effects.

While her classmates produced lots of cool footage worthy of the silver screen, Iwasa wanted to learn how to depict in colorful 3D action, some of the complex molecular processes that are so difficult to convey using static 2D illustration. Among her creations is this 2-minute, rough-draft animation showing how the human immunodeficiency virus (HIV) recognizes and infects a type of immune cell known as a T cell.

Continue reading

Epilepsy Research Benefits from the Crowd

BrainFor millions of people with epilepsy, life comes with too many restrictions. If they just had a reliable way to predict when their next seizure will come, they could have a chance at leading more independent and productive lives.

That’s why it is so encouraging to hear that researchers have developed a new algorithm that can predict the onset of a seizure correctly 82 percent of the time. Until recently, the best algorithm was hardly better than flipping a coin, leading some to speculate that seizures are random neurological events that can’t be predicted at all. But the latest leap forward shows that seizures certainly can be predicted, and our research efforts are headed in the right direction to make them even more predictable. The other big news is how this new algorithm was developed: it’s the product of a crowdsourcing competition.

Continue reading

Creative Minds: A Baby’s Eye View of Language Development

Click to start videoIf you are a fan of wildlife shows, you’ve probably seen those tiny video cameras rigged to animals in the wild that provide a sneak peek into their secret domains. But not all research cams are mounted on creatures with fur, feathers, or fins. One of NIH’s 2014 Early Independence Award winners has developed a baby-friendly, head-mounted camera system (shown above) that captures the world from an infant’s perspective and explores one of our most human, but still imperfectly understood, traits: language.

Elika Bergelson

Elika Bergelson
Credit: Zachary T. Kern

Elika Bergelson, a young researcher at the University of Rochester in New York, wants to know exactly how and when infants acquire the ability to understand spoken words. Using innovative camera gear and other investigative tools, she hopes to refine current thinking about the natural timeline for language acquisition. Bergelson also hopes her work will pay off in a firmer theoretical foundation to help clinicians assess children with poor verbal skills or with neurodevelopmental conditions that impair information processing, such as autism spectrum disorders.

Continue reading

Digging Up New Antibiotics

iChip being removed from dirt

Caption: Microfluidic chip being used by scientists to search dirt for new sources of antibiotics.
Credit: Slava Epstein/Northeastern U.

Last fall, President Obama issued an Executive Order aimed at combating a growing public health threat: antibiotic-resistant infections that claim the lives of 23,000 Americans every year [1]. So, I’m pleased to report that biomedical research has made some exciting progress on this front with the discovery of what promises to be a powerful new class of antibiotic drugs—the first such discovery in more than 25 years.

There are two significant things about this feat. The first is that the new antibiotic, called teixobactin, not only has the ability to kill a wide range of infection-causing bacteria, but to kill them in a way that may greatly reduce the problem of resistance. The second is that researchers identified teixobactin using an ingenious approach that enhances our ability to search one of nature’s richest sources of potential antibiotics: soil [2, 3].

Continue reading

Ferreting Out Genomic Secrets

Ferret

Ferret in a Colorado conservation center, U.S. Fish and Wildlife Service

Not only is the ferret (Mustela putorius furo) adept at navigating a dirt field or threading electrical cables through piping (in New Zealand, ferrets can be registered as electrician assistants), this furry 5-pounder ranks as a real heavyweight for studying respiratory diseases. In fact, much of our current thinking about influenza is influenced by research with ferrets.

Now, the ferret will stand out even more. As reported online in Nature Biotechnology, NIH-funded researchers recently sequenced the genome of the sable ferret, the type that is bred in the United States as a pet. By studying this genetic blueprint like an explorer would a map, scientists can perform experiments to learn more systematically how the ferret copes biologically with common or emerging respiratory pathogens, pointing the way to improved strategies to preserve the health and well being of humans and ferrets alike.

Continue reading