Skip to main content

hearing


LabTV: Curious About Genetics of Deafness

Posted on by

Joseph FosterWhat do Miami, music, and genetic research have in common? They are all central to the life of Joseph Foster, the young researcher who’s in the spotlight for our next installment of LabTV.

Foster, a research associate in Mustafa Tekin’s lab at the University of Miami’s Hussman Institute for Human Genomics, is involved in the hunt for the remaining genes responsible for congenital forms of deafness.This area of research is a good fit for Foster. Not only does he have a keen interest in genetic diseases (a close family member was born with cystic fibrosis), he’s a musician with a deep appreciation of the gift of hearing—loving to play the saxophone in his free time.


Snapshots of Life: The Biological Basis of Hearing

Posted on by

sensory hair cells in a chicken's ear

Credit: Peter Barr-Gillespie and Kateri Spinelli, Oregon Health & Science University, Portland

Did you know that chickens have ears? Well, here’s the evidence—you’re looking at a micrograph of sensory hair cells that make up the inner ear of Gallus gallus domesticus, otherwise known as the domestic chicken. Protruding from each hair cell is a tall bundle of stiff appendages, called stereocilia, that capture vibrations and enable the chicken to hear everything from grain being poured into a feeder to the footsteps of a wily fox. The flatter area is occupied by supporting cells, which have recently been shown to have the capacity to regenerate damaged or destroyed hair cells.

Peter Barr-Gillespie and Kateri Spinelli of Oregon Health & Science University, Portland used a scanning electron microscope to capture this image—one of the winners of the Federation of American Societies for Experimental Biology’s 2014 BioArt competition—while studying how these cells convert sound waves into brain waves. It is generally known that sound waves cause the stereocilia on each hair cell to oscillate in concert. These vibrating stereocilia trigger electrical changes in the hair cells, which then send signals to the brain. Barr-Gillespie’s group focuses on the actual molecules that build the stereocilia and translate the vibrations into brain signals.


Creative Minds: A Baby’s Eye View of Language Development

Posted on by

Click to start videoIf you are a fan of wildlife shows, you’ve probably seen those tiny video cameras rigged to animals in the wild that provide a sneak peek into their secret domains. But not all research cams are mounted on creatures with fur, feathers, or fins. One of NIH’s 2014 Early Independence Award winners has developed a baby-friendly, head-mounted camera system (shown above) that captures the world from an infant’s perspective and explores one of our most human, but still imperfectly understood, traits: language.

Elika Bergelson

Elika Bergelson
Credit: Zachary T. Kern

Elika Bergelson, a young researcher at the University of Rochester in New York, wants to know exactly how and when infants acquire the ability to understand spoken words. Using innovative camera gear and other investigative tools, she hopes to refine current thinking about the natural timeline for language acquisition. Bergelson also hopes her work will pay off in a firmer theoretical foundation to help clinicians assess children with poor verbal skills or with neurodevelopmental conditions that impair information processing, such as autism spectrum disorders.


Vision Loss Boosts Auditory Perception

Posted on by

Image of green specks with blobs of blue centered around a large red blob with tentacles

Caption: A neuron (red) in the auditory cortex of a mouse brain receives input from axons projecting from the thalamus (green). Also shown are the nuclei (blue) of other cells.
Credit: Emily Petrus, Johns Hopkins University, Baltimore

Many people with vision loss—including such gifted musicians as the late Doc Watson (my favorite guitar picker), Stevie Wonder, Andrea Bocelli, and the Blind Boys of Alabama—are thought to have supersensitive hearing. They are often much better at discriminating pitch, locating the origin of sounds, and hearing softer tones than people who can see. Now, a new animal study suggests that even a relatively brief period of simulated blindness may have the power to enhance hearing among those with normal vision.

In the study, NIH-funded researchers at the University of Maryland in College Park, and Johns Hopkins University in Baltimore, found that when they kept adult mice in complete darkness for one week, the animals’ ability to hear significantly improved [1]. What’s more, when they examined the animals’ brains, the researchers detected changes in the connections among neurons in the part of the brain where sound is processed, the auditory cortex.


Next Page