Snapshots of Life: Seeing, from Eye to Brain

Credit: Xueting Luo and Kevin Park, University of Miami

Fasten your seat belts! We’re going to fly through the brain of a mouse. Our tour guide is Kevin Park, an NIH-funded neuroscientist at the University of Miami, who has developed a unique method to visualize neurons in an intact brain. He’s going to give us a rare close-up of the retinal ganglion cells that carry information from the eye to the brain, where the light signals are decoded and translated.

To make this movie, Park has injected a fluorescent dye into the mouse eye; it is taken up by the retinal cells and traces out the nerve pathways from the optic nerve into the brain.

Continue reading

Cancer Cachexia: Might This Molecule Hold the Key?

PTHrP

Caption: Structure of parathyroid hormone-related protein (PTHrP), which has been implicated in cancer-related cachexia.
Source: The Protein Data Bank

No matter how much high-calorie food they eat or nutritionally fortified shakes they drink, many people with cancer just can’t seem to maintain their body weight. They lose muscle and fat, sometimes becoming so weak that they can’t tolerate further treatment. Called cachexia, this progressive wasting syndrome has long troubled patients and their families, as well as baffled scientists searching for ways to treat or perhaps even prevent it.

Some previous studies [1-3] have observed that humans and mice suffering from cachexia have “activated” brown fat. This type of fat, as I explained in a previous post, has the ability to convert its chemical energy into heat to keep the body warm. Intrigued by these hints, a team led by Bruce Spiegelman of the Dana-Farber Cancer Institute and Harvard Medical School in Boston recently decided to explore whether tumor cells might secrete molecules that spur similar brown fat-like activity, causing a gradual depletion of the body’s energy stores.

Continue reading

Formula for Innovation: People + Ideas + Time

Collage of scientists, clinical research, and science imagesIn these times of tight budgets and rapidly evolving science, we must consider new ways to invest biomedical research dollars to achieve maximum impact—to turn scientific discoveries into better health as swiftly as possible. We do this by thinking strategically about the areas of research that we support, as well as the process by which we fund that research.

Historically, most NIH-funded grants have been “project-based,” which means that their applications have clearly delineated aims for what will be accomplished during a defined project period. These research project grants typically last three to five years and vary in award amount. For example, the average annual direct cost of the R01 grant—the gold standard of NIH funding—was around $282,000 in FY 2013, with an average duration of about 4.3 years.

Continue reading

Nanojuice: Getting a Real-Time View of GI Motility

Nanojuice as it passes through the gut of the mouse

Caption: A real-time image of nanojuice as it passes through a mouse’s small intestine. A laser causes particles in the nanojuice to vibrate, creating vibrations picked up by an ultrasound detector that are then used to generate a black-and-white image. Rainbow colors are added afterward to reflect the depth of the intestine within the mouse’s abdomen: blue is closest to the surface and red is deepest.
Credit: Jonathan Lovell, University at Buffalo

For those of you who love to try new juices, you’ve probably checked out acai, goji berry, and maybe even cold-pressed kale. But have you heard of nanojuice? While it’s not a new kind of health food, this scientific invention may someday help to improve human health through its power to visualize the action of the gastrointestinal (GI) tract in real-time.

It’s true that doctors already have many imaging tools at their disposal to examine various parts of the GI tract—all the way from throat to colon. These include invasive techniques, such as upper endoscopy and colonoscopy; as well as non-invasive approaches, such as ultrasound, magnetic resonance imaging, and X-ray procedures that may or may not involve swallowing a chalky liquid containing barium or other materials that are radio-opaque. There’s even a wireless capsule that can shoot videos as it travels all the way through the GI tract. None of these techniques, however, provides a non-invasive, real-time view of the wave-like muscle contractions that move food through the gut—a crucial process called peristalsis.

Continue reading

Snapshots of Life: Portrait of Skin Cancer

Squamous cell carcinoma

Caption: This image shows the uncontrolled growth of cells in squamous cell carcinoma.
Credit: Markus Schober and Elaine Fuchs, The Rockefeller University, New York

For Markus Schober, science is more inspiring when the images are beautiful, even when the subject is not. So, when this biologist was at The Rockefeller University in New York and peered through his microscope at squamous cell carcinoma (SCC), both the diabolical complexity—and the beauty—of this common form of skin cancer caught his eye.

Schober wasn’t the only one who found the image compelling. A panel of judges from the National Institute of General Medical Sciences and the American Society for Cell Biology chose to feature it in their Life: Magnified exhibit, which recently opened at the Washington Dulles International Airport.

Continue reading