Skip to main content

amyloid plaques

Alzheimer’s-in-a-Dish: New Tool for Drug Discovery

Posted on by

Alzheimer's Disease in a dish

Caption: A plaque (orange) disrupts the normal network of human neurons (green) grown in a three-dimensional gel in the lab, mimicking the brain anatomy of Alzheimer’s patients.
Credit: Doo Yeon Kim and Rudolph E. Tanzi, Massachusetts General Hospital/ Harvard Medical School

Researchers want desperately to develop treatments to help the more than 5 million Americans with Alzheimer’s disease and the millions more at risk. But that’s proven to be extremely challenging for a variety of reasons, including the fact that it’s been extraordinarily difficult to mimic the brain’s complexity in standard laboratory models. So, that’s why I was particularly excited by the recent news that an NIH-supported team, led by Rudolph Tanzi at Boston’s Massachusetts General Hospital, has developed a new model called “Alzheimer’s in a dish.”

So, how did Tanzi’s group succeed where others have run up against a brick wall? The answer appears to lie in their decision to add a third dimension to their disease model.  Previous attempts at growing human brain cells in the lab and inducing them to form the plaques and tangles characteristic of Alzheimer’s disease were performed in a two-dimensional Petri dish system. And, in this flat, 2-D environment, plaques and tangles simply didn’t appear.


Creative Minds: REST-ling with Alzheimer’s Disease

Posted on by

REST in healthy and Alzheimer's cells

Caption: The REST protein (green) is dormant in young people but switches on in the nucleus of normal aging human neurons (top), apparently providing protection against age-related stresses, including abnormal proteins associated with neurodegenerative diseases. REST is lost in neuron nuclei in critical brain regions in the early stages of Alzheimer’s disease (bottom). Neurons are labeled with red.
Credit: Yankner Lab, Harvard Medical School

Why do some people remain mentally sharp over their entire lifetimes, while others develop devastating neurodegenerative diseases that destroy their minds and rob them of their memories? What factors protect the human brain as it ages? And can what we learn about those factors enable us to find ways of helping the millions of people at risk for Alzheimer’s disease and other forms of senile dementia?

Those are just a few of the tough questions that Bruce Yankner, a 2010 recipient of the NIH Director’s Pioneer Award, has set out to answer by monitoring how gene activity in the brain’s prefrontal cortex (PFC) changes as we age. The PFC is the region of the brain involved in decision-making, abstract thinking, working memory, and many other higher cognitive functions; it is also among the regions hardest hit by Alzheimer’s disease.