Fighting Parasitic Infections: Promise in Cyclic Peptides

Cyclic peptide bound to iPGM

Caption: Cyclic peptide (middle) binds to iPGM (blue).
Credit: National Center for Advancing Translational Sciences, NIH

When you think of the causes of infectious diseases, what first comes to mind are probably viruses and bacteria. But parasites are another important source of devastating infection, especially in the developing world. Now, NIH researchers and their collaborators have discovered a new kind of treatment that holds promise for fighting parasitic roundworms. A bonus of this result is that this same treatment might work also for certain deadly kinds of bacteria.

The researchers identified the potential new  therapeutic after testing more than a trillion small protein fragments, called cyclic peptides, to find one that could disable a vital enzyme in the disease-causing organisms, but leave similar enzymes in humans unscathed. Not only does this discovery raise hope for better treatments for many parasitic and bacterial diseases, it highlights the value of screening peptides in the search for ways to treat conditions that do not respond well—or have stopped responding—to more traditional chemical drug compounds.

Continue reading

Creative Minds: Breaking Size Barriers in Cryo-Electron Microscopy

Dmitry Lyumkis

Dmitry Lyumkis

When Dmitry Lyumkis headed off to graduate school at The Scripps Research Institute, La Jolla, CA, he had thoughts of becoming a synthetic chemist. But he soon found his calling in a nearby lab that imaged proteins using a technique known as single-particle cryo-electron microscopy (EM). Lyumkis was amazed that the team could take a purified protein, flash-freeze it in liquid nitrogen, and then fire electrons at the protein, capturing the resulting image with a special camera. Also amazing was the sophisticated computer software that analyzed the raw 2D camera images, merging the data and reconstructing it into 3D representations of the protein.

The work was profoundly complex, but Lyumkis thrives on solving extremely difficult puzzles. He joined the Scripps lab to become a structural biologist and a few years later used single-particle cryo-EM to help determine the atomic structure of a key protein on the surface of the human immunodeficiency virus (HIV), the cause of AIDS. The protein had been considered one of the greatest challenges in structural biology and a critical target in developing an AIDS vaccine [1].

Now, Lyumkis has plans to take single-particle cryo-EM to a whole new level—literally. He wants to develop new methods that allow it to model the atomic structures of much smaller proteins. Right now, single-particle cryo-EM has worked with proteins as small as roughly 150 kilodaltons, a measure of a protein’s molecular weight (the approximate average mass of a protein is 53 kDa). Lyumkis plans to drop that number well below 100 kDa, noting that if his new methods work as he hopes, there should be very little, if any, lower size limit to get the technique to work. He envisions generating within a matter of days or weeks the precise structure of an average-sized protein involved in a disease, and then potentially handing it off as an atomic model for drug developers to target for more effective treatment.

Continue reading

Fighting Depression: Ketamine Metabolite May Offer Benefits Without the Risks

Depressed Woman

Thinkstock/Ryan McVay

For people struggling with severe depression, antidepressants have the potential to provide much-needed relief, but they often take weeks to work. That’s why there is growing excitement about reports that the anesthetic drug ketamine, when delivered intravenously in very low doses, can lift depression and suicidal thoughts within a matter of hours. Still, there has been reluctance to consider ketamine for widespread treatment of depression because, even at low doses, it can produce very distressing side effects, such as dissociation—a sense of disconnection from one’s own thoughts, feelings, and sense of identity. Now, new findings suggest there may be a way to tap into ketamine’s depression-fighting benefits without the side effects.

In a mouse study published in the journal Nature, an NIH-funded research team found that the antidepressant effects of ketamine are produced not by the drug itself, but by one of its metabolites—a substance formed as the body breaks ketamine down. What’s more, the work demonstrates that this beneficial metabolite does not cause the risky dissociation effects associated with ketamine. While further development and subsequent clinical trials are needed, the findings are a promising step toward the development of a new generation of rapid-acting antidepressant drugs.

Continue reading

DNA Barcodes Could Streamline Search for New Drugs to Combat Cancer

Cells labeled with barcodesA little more than a decade ago, researchers began adapting a familiar commercial concept to genomics: the barcode. Instead of the black, printed stripes of the Universal Product Codes (UPCs) that we see on everything from package deliveries to clothing tags, they used short, unique snippets of DNA to label cells. These biological “barcodes” enable scientists to distinguish one cell type from another, in much the same way that a supermarket scanner recognizes different brands of cereal.

DNA barcoding has already empowered single-cell analysis, including for nerve cells in the brain. Now, in a new NIH-supported study, DNA barcoding helps in the development of a new method that could greatly streamline an increasingly complex and labor-intensive process: screening for drugs to combat cancer.

Continue reading

Got It Down Cold: Cryo-Electron Microscopy Named Method of the Year


Caption: Composite image of beta-galactosidase showing how cryo-EM’s resolution has improved dramatically in recent years. Older images to the left, more recent to the right.
Credit: Veronica Falconieri, Subramaniam Lab, National Cancer Institute

In the quest to find faster, better ways of mapping the structure of proteins and other key biological molecules, a growing number of researchers are turning to an innovative method that pushes the idea of a freeze frame to a whole new level:  cryo-electron microscopy (cryo-EM). The technique, which involves flash-freezing molecules in liquid nitrogen and bombarding them with electrons to capture their images with a special camera, has advanced dramatically since its inception thanks to the efforts of many creative minds. In fact, cryo-EM has improved so much that its mapping performance now rivals that of X-ray crystallography [1], the long-time workhorse of drug developers and structural biologists.

To get an idea of just how far cryo-EM has come over the last decade, take a look at the composite image above, which shows a bacterial enzyme (beta-galactosidase) bound to a drug-like molecule (phenylethyl beta-D-thiogalactopyranoside). To the left, you see a blob-like area generated by cryo-EM methods that would have been considered state-of-the-art just a few years ago. To the right, there’s an exquisitely detailed structure, which was produced at more than 10-times greater resolution using the latest advances in cryo-EM. In fact, today’s cryo-EM is so powerful that researchers can almost make out individual atoms! Very impressive, and just one of the many reasons why the journal Nature Methods recently named cryo-EM its “Method of the Year” for 2015 [2].

Continue reading