Skip to main content

NIH Pioneer Award

Creative Minds: Complex Solutions to Inflammation

Posted on by Dr. Francis Collins

Hao Wu

Hao Wu

For nearly 20 years, Hao Wu has studied innate immunity, our body’s first line of defense against infection. One of her research specialties is the challenging technique of X-ray crystallography, which she uses to capture the atomic structure of key molecules that drive an inflammatory response. But for this method to work, the proteins have to be coaxed to form regular crystals—and that has often proven to be prohibitively difficult. Wu, now at Boston Children’s Hospital and Harvard Medical School, can be relentless in her attempts to crystallize difficult molecular structures, and this quality has helped her make a number of important discoveries. Among them is the seminal finding that innate immune cells process and internalize signals to handle invading microbes much differently than previously thought.

Innate immune cells, which include macrophages and neutrophils, patrol the body non-specifically, keeping a look out for signs of anything unusual. Using protein receptors displayed on their surfaces, these cells can sense distinctive molecular patterns on microbes, prompting an immediate response at the site of infection.

Wu has shown that these cells form previously unknown protein complexes that mediate the immune response [1, 2]. She received an NIH Director’s 2015 Pioneer Award to help translate her expertise in the structural biology of these signaling complexes into the design of new kinds of anti-inflammatory treatments. This award helps exceptionally creative scientists to pioneer transformative approaches to major challenges in biomedical and behavioral research.


Creative Minds: REST-ling with Alzheimer’s Disease

Posted on by Dr. Francis Collins

REST in healthy and Alzheimer's cells

Caption: The REST protein (green) is dormant in young people but switches on in the nucleus of normal aging human neurons (top), apparently providing protection against age-related stresses, including abnormal proteins associated with neurodegenerative diseases. REST is lost in neuron nuclei in critical brain regions in the early stages of Alzheimer’s disease (bottom). Neurons are labeled with red.
Credit: Yankner Lab, Harvard Medical School

Why do some people remain mentally sharp over their entire lifetimes, while others develop devastating neurodegenerative diseases that destroy their minds and rob them of their memories? What factors protect the human brain as it ages? And can what we learn about those factors enable us to find ways of helping the millions of people at risk for Alzheimer’s disease and other forms of senile dementia?

Those are just a few of the tough questions that Bruce Yankner, a 2010 recipient of the NIH Director’s Pioneer Award, has set out to answer by monitoring how gene activity in the brain’s prefrontal cortex (PFC) changes as we age. The PFC is the region of the brain involved in decision-making, abstract thinking, working memory, and many other higher cognitive functions; it is also among the regions hardest hit by Alzheimer’s disease.


Creative Minds: Making Sense of Stress and the Brain

Posted on by Dr. Francis Collins

Photo of a woman in front of a chalk board
Amy Arnsten
Credit: Terry Dagradi, Yale School of Medicine

Right behind your forehead lies the most recently evolved region of the human brain: the prefrontal cortex (PFC). It’s a major control center for abstract thinking, thought analysis, working memory, planning, decision making, regulating emotions, and many of the things we most strongly associate with being human. But in times of stress, the PFC is literally taken offline, allowing more primitive parts of the brain to take over.

Amy Arnsten, a neuroscientist at the Yale School of Medicine, New Haven, CT, has pioneered the study of stress on the brain [1] and how impaired regulation of stress response in the PFC contributes to neurological disorders, such as Attention Deficit Hyperactivity Disorder (ADHD), schizophrenia [2, 3], and Alzheimer’s disease [4]. In these disorders, cells in the PFC are negatively affected, while those in the primary sensory cortex, a more primitive part of the brain that processes vision and sound, are thought to remain relatively unscathed. With support from a 2013 NIH Director’s Pioneer Award, Arnsten hopes to uncover why the PFC is more vulnerable to disease than the primary sensory cortex—and how we might be able to prevent or reverse damage to these circuits.


Creative Minds: Interpreting Your Genome

Posted on by Dr. Francis Collins

Artist's rendering of a doctor with a patient and a strand of DNA

Credit: Jane Ades, National Human Genome Research Institute, NIH

Just this year, we’ve reached the point where we can sequence an entire human genome for less than $1,000. That’s great news—and rather astounding, since the first human genome sequence (finished in 2003) cost an estimated $400,000,000!  Does that mean we’ll be able to use each person’s unique genetic blueprint to guide his or her health care from cradle to grave?  Maybe eventually, but it’s not quite as simple as it sounds.

Before we can use your genome to develop more personalized strategies for detecting, treating, and preventing disease, we need to be able to interpret the many variations that make your genome distinct from everybody else’s. While most of these variations are neither bad nor good, some raise the risk of particular diseases, and others serve to lower the risk. How do we figure out which is which?

Jay Shendure, an associate professor at the University of Washington in Seattle, has an audacious plan to figure this out, which is why he is among the 2013 recipients of the NIH Director’s Pioneer Award.


Shining a Bright Light on Cocaine Addiction

Posted on by Dr. Francis Collins

Image of a slice of a brain stained blue with fluorescent green section at the top center

Caption: Optogenetic stimulation using laser pulses lights up the prelimbic cortex
Source: Courtesy of Billy Chen and Antonello Bonci

Wow—there is a lot of exciting brain research in progress, and this week is no exception. A team here at NIH, collaborating with scientists at the University of California in San Francisco, delivered harmless pulses of laser light to the brains of cocaine-addicted rats, blocking their desire for the narcotic.

If that sounds a bit way out, I can assure you the approach is based on some very solid evidence suggesting that people—and rats—are more vulnerable to addiction when a region of their brain in the prefrontal cortex isn’t functioning properly. Brain imaging studies show that rat and human addicts have less activity in the region compared with healthy individuals; and chronic cocaine use makes the problem of low activity even worse. The prefrontal cortex is critical for decision-making, impulse control, and behavior; it helps you weigh the negative consequences of drug use.