Skip to main content


Racing to Develop Fast, Affordable, Accessible Tests for COVID-19

Posted on by

RADx: Innovating Better Tests
Credit: iStock/peshkov

Developing faster, more convenient ways of testing for coronavirus disease 2019 (COVID-19) will be essential to our efforts to end this deadly pandemic. Despite the tremendous strides that have been made in diagnostics over the past seven months, we still need more innovation.

We need reliable, affordable tests for the presence SARS-CoV-2—the novel coronavirus that causes COVID-19—that do not take hours or days to deliver results. We need tests that are more user friendly, and that don’t rely on samples collected by swabs that have to be inserted deep into the nose by someone wearing PPE. We need tests that can be performed at the point-of-care, whether a doctor’s office, urgent care clinic, long-term care facility, or even a home. Ideally, such tests should also be able to integrate with mobile devices to convey results and transmit data seamlessly. Above all, we need tests that are accessible to everyone.

Most current diagnostic tests for SARS-CoV-2 involve detecting viral genetic material using a decades-old technology called the polymerase chain reaction (PCR). If there’s even a tiny bit of viral genetic material in a patient’s sample, PCR can amplify the material millions of times so that it can be readily detected. The problem is that this amplification process is time-consuming and requires a thermal cycling machine that’s generally operated by trained personnel in sophisticated lab settings.

To spur the creation of new approaches that can rapidly expand access to testing, NIH launched the Rapid Acceleration of Diagnostics (RADx) program in late April 2020. This fast-paced, innovative effort, conducted in partnership with the Office of the Assistant Secretary of Health, the Biomedical Advanced Research and Development Authority (BARDA), and the Department of Defense, is supported by $1.5 billion in federal stimulus funding. The goal? To expand diagnostic testing capacity for COVID-19 in the United States to about 6 million tests per day by December. That’s quite a leap forward because our nation’s current testing capacity is currently about 1 million tests per day.

Just yesterday, I joined other NIH leaders in authoring a special report in the New England Journal of Medicine that describes RADx’s main activities, and provides an update on the remarkable progress that’s been made in just three short months [1]. In a nutshell, RADx consists of four components: RADx-tech, RADx Advanced Technology Platforms (RADx-ATP). RADx Radical (RADx-rad), and RADx Underserved Populations (RADx-UP).

Though all parts of RADx are operating on a fast-track, RADx-tech has embraced its rapid timelines in a can-do manner unlike anything that I’ve encountered in my 27 years in government. Here’s how the process, which has been likened to a scientific “shark tank,” works.

Once an applicant submits a test idea to RADx-tech, it’s reviewed within a day by a panel of 30 experts. If approved, the application moves to a highly competitive “shark-tank” in which a team of experts spend about 150 to 200 person-hours with the applicant evaluating the technical, clinical, and commercial strengths and weaknesses of the proposed test.

From there, a detailed proposal is presented to a steering committee, and then sent to NIH. If we at NIH think it’s a great idea, promising early-stage technologies enter what’s called “phase one” development, with considerable financial support and the expectation that the applicant will hit its validation milestones within a month. Technologies that succeed can then go to “phase two”, where support is provided for scale-up of tests for meeting regulatory requirements and supporting manufacture, scale-up, and distribution.

The major focus of RADx-tech is to simplify and speed diagnostic testing for COVID-19. Tests now under development include a variety of mobile devices that can be used at a doctor’s office or other point-of-care settings, and give results in less than an hour. In addition, about half of the tests now under development use saliva or another alternative to samples gathered via nasal swabs.

As Americans think about how to move back safely into schools, workspaces, and other public areas in the era of COVID-19, it is clear that we need to figure out ways to make it easier for everyone to get tested. To attain that goal, RADx has three other components that build on different aspects of this social imperative:

RADx Advanced Technology Platforms (RADx-ATP). This program offers a rapid-response application process for firms with existing point-of-care technologies authorized by the Food and Drug Administration (FDA) for detecting SARS-CoV-2. These technologies are already advanced enough that they don’t need the shark tank. The RADx-ATP program provides support for scaling up production to between 20,000 and 100,000 tests per day by the fall. Another component of this program provides support for expanding automated “mega-labs” to increase testing capacity across the country by another 100,000 to 250,000 tests per day.

RADx Radical (RADx-rad). The program seeks to fuel the development of truly futuristic testing technologies. For example, it supports projects that use biomarkers to detect an infection or predict the severity of disease, including the likelihood of developing COVID-related multisystem inflammatory syndrome in children (MIS-C). Other areas of interest include the use of biosensors to detect the presence of the virus in a person’s breath and the analysis of wastewater to conduct community-based surveillance.

RADx Underserved Populations (RADx-UP). Data collected over the past several months make it clear that Blacks, Latinxs, and American Indians/Alaska Natives are hospitalized and die of COVID-19 at disproportionately higher rates than other groups. RADx-UP aims to engage underserved communities to improve access to testing. Such actions will include closely examining the factors that have led to the disproportionate burden of the pandemic on underserved populations, as well as building infrastructure that can be leveraged to provide optimal access and uptake of SARS-CoV-2 testing in such communities.

At NIH, we have great hopes for what RADx-supported research will do to help bring to an end the greatest public health crisis of our generation. Yet the benefits may not end there. The diagnostic testing technologies developed here will have many other applications moving forward. Long after the COVID-19 pandemic becomes a chapter in history books, I’m convinced the RADx model of rapid innovation will be inspiring future generations of researchers as they look for creative new ways to address other diseases and conditions.


[1] Rapid scaling up of COVID-19 diagnostic testing in the United States—The NIH RADx Initiative. Tromberg BJ, Schwetz TA, Perez-Stable E, Hodes RJ. Woychick RP, Bright RA, Fleurence RL, Collins FS. NEJM; 2020 July 16. [Online publication ahead of print]


Coronavirus (COVID-19) (NIH)

Rapid Acceleration of Diagnostics (RADx)

NIH mobilizes national innovation initiative for COVID-19 diagnostics,” NIH news release, April 29, 2020.

Rising to the COVID-19 Challenge: Rapid Acceleration of Diagnostics (RADx)

Posted on by

NIH Rapid Acceleration of Diagnostics (RADx) Initiative for COVID-19
Credit: NIH

Step into any major medical center, and you will see the amazing power of technology at work. From X-rays to functional MRIs, blood typing to DNA sequencing, heart-lung machines to robotic surgery, the progress that biomedical technology has made over the past century or so stands as a testament to human ingenuity—and its ability to rise to the all-important challenge of saving lives and improving health.

Today, our nation is in the midst of trying to contain a most formidable health threat: the global coronavirus disease 2019 (COVID-19) pandemic. I’m convinced that biomedical technology has a vital role to play in this urgent effort, which is why the NIH today launched the Rapid Acceleration of Diagnostics (RADx) Initiative.

Fueled by a bold $1.5 billion investment made possible by federal stimulus funding, RADx is an urgent call for science and engineering’s most inventive and visionary minds—from the basement to the board room—to develop rapid, easy-to-use testing technologies for SARS-CoV-2, the novel coronavirus that causes COVID-19. To achieve this, NIH will work closely with our colleagues at the Biomedical Advanced Research and Development Authority, the Centers for Disease Control and Prevention, and the Food and Drug Administration.

If all goes well, RADx aims to support innovative technologies that will make millions more rapid SARS-CoV-2 tests available to Americans by late summer or fall. Such widespread testing, which will facilitate the speedy identification and quarantine of infected individuals and their contacts, will likely be a critical component of making it possible for Americans to get safely back into public spaces, including returning to work and school.

For history buffs and tech geeks, the RADx acronym might ring a bell. During the World War II era, it was the brainstorming of MIT’s “Rad Lab” that gave birth to radar—a groundbreaking technology that, for the first time, enabled humans to use radio waves to “see” planes, storm systems, and many other things. Radar played such a valuable role in finding bombing targets, directing gunfire, and locating enemy aircraft, ships, and artillery that some have argued that this technology actually won the war for the U.S. and its Allies.

As for NIH’s RADx, our aim is to speed the development and commercialization of tests that can rapidly “see” if people have been infected with SARS-CoV-2 with very high sensitivity and specificity, meaning there would be few false negatives and false positives. A key part of this effort, which started today, will be a national technology development competition that’s open to all comers. In this competition, which begins a bit like a “shark tank,” participants will vie for an ultimate share of an approximately $500 million fund that will be awarded to help advance the most-promising testing technologies.

The proposals will undergo an initial review for technical, clinical, commercial, and regulatory issues. For example, could the testing technology be easily scaled up? Would it provide clear advantages over existing approaches? And would the U.S. health-care system realistically be able to adopt the technology rapidly? If selected, the proposals will then enter a three-phase process that will run into summer. Each development team will receive its own initial budget, deadlines, and set of deliverables. Competitors must also work collaboratively with an assigned expert and utilize associated web-based tools.

As you see in the graphic above, each phase will whittle down the competition. Those testing technologies that succeed in making it to Phase 2 will receive an appropriate budget to enable full clinical deployment on an accelerated timeline. They will also be matched with technical, business, and manufacturing experts to boost their chances of success.

Of course, not all technologies will enter the competition at the same stages of development. Those that are already relatively far along will be “fast tracked” to a phase that corresponds with their place in the commercialization process. Our hope is that the winning technologies will feature patient- and user-friendly designs, mobile-device integration, affordable cost, and increased accessibility, for use at the point of care (or even at home).

To assist competitors in their efforts to accomplish these bold goals, RADx will expand the Point-of-Care Technologies Research Network, which was established several years ago by NIH’s National Institute of Biomedical Imaging and Bioengineering (NIBIB). The network supports hundreds of investigators through five technology hubs at: Emory University/Georgia Institute of Technology, Atlanta; Johns Hopkins University, Baltimore; Northwestern University, Evanston, IL; University of Massachusetts Medical School, Worcester; and the Consortia for Improving Medicine with Innovation & Technology at Harvard Medical School/Massachusetts General Hospital, Boston.

RADx is focused on diagnostic testing, but NIH is also intensely engaged in developing safe, effective therapies and vaccines for COVID-19. One innovative effort, called Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV), is a public-private partnership that aims to speed the development of ways to treat and prevent this disease that’s caused so much suffering and death around the globe.

So, to the U.S. science and engineering community, I have these words: Let’s get going—our nation has never needed your skills more!


Coronavirus (COVID-19) (NIH)

NIH mobilizes national innovation initiative for COVID-19 diagnostics, NIH news release, April 29, 2020

Point-of-Care Technologies Research Network (National Institute of Biomedical Imaging and Biotechnology/NIH)

NIH to launch public-private partnership to speed COVID-19 vaccine and treatment options, NIH news release, April 17, 2020.

We Need More COVID-19 Tests. We Propose a ‘Shark Tank’ to Get There, Lamar Alexander, Roy Blunt. Washington Post, April 20, 2020.