Skip to main content

T cells

FDA Approves First CAR-T Cell Therapy for Pediatric Acute Lymphoblastic Leukemia

Posted on by

Emily Whitehead

Caption: Cancer survivor Emily Whitehead with her dog Lucy.
Credit: Emily Whitehead Foundation

Tremendous progress continues to be made against the Emperor of All Maladies, cancer. One of the most exciting areas of progress involves immunotherapy, a treatment strategy that harnesses the natural ability of the body’s own immune cells to attack and kill tumor cells. A lot of extremely hard work has gone into this research, so I was thrilled to learn that the Food and Drug Administration (FDA) just announced today its first approval of a promising type of immunotherapy called CAR-T cell therapy for kids and young adults with B-cell acute lymphoblastic leukemia (ALL)—the most common childhood cancer in the U.S.

ALL is a cancer of white blood cells called lymphocytes. Its treatment with chemotherapy drugs, developed with NIH support, has transformed ALL’s prognosis in kids from often fatal to largely treatable: about 90 percent of young patients now recover. But for those for whom the treatment fails, the prognosis is grim.

In the spring of 2012, Emily Whitehead of Philipsburg, PA was one such patient. The little girl was deathly ill, and her parents were worried they’d run out of options. That’s when doctors at Children’s Hospital of Philadelphia gave Emily and her parents new hope. Carl June and his team had successfully treated three adults with their version of CAR-T cell therapy, which is grounded in initial basic research supported by NIH [1,2]. Moving forward with additional clinical tests, they treated Emily—their first pediatric patient—that April. For a while, it was touch and go, and Emily almost died. But by May 2012, her cancer was in remission. Today, five years later, 12-year-old Emily remains cancer free and is thriving. And I’ve had the great privilege of getting to know Emily and her parents over the last few years.


Regenerative Medicine: Making Blood Stem Cells in the Lab

Posted on by

Endothelial cells becoming hematopoietic stem cells

Caption: Arrow in first panel points to an endothelial cell induced to become hematopoietic stem cell (HSC). Second and third panels show the expansion of HSCs over time.
Credit: Raphael Lis, Weill Cornell Medicine, New York, NY

Bone marrow transplants offer a way to cure leukemia, sickle cell disease, and a variety of other life-threatening blood disorders.There are two major problems, however: One is many patients don’t have a well-matched donor to provide the marrow needed to reconstitute their blood with healthy cells. Another is even with a well-matched donor, rejection or graft versus host disease can occur, and lifelong immunosuppression may be needed.

A much more powerful option would be to develop a means for every patient to serve as their own bone marrow donor. To address this challenge, researchers have been trying to develop reliable, lab-based methods for making the vital, blood-producing component of bone marrow: hematopoietic stem cells (HSCs).

Two new studies by NIH-funded research teams bring us closer to achieving this feat. In the first study, researchers developed a biochemical “recipe” to produce HSC-like cells from human induced pluripotent stem cells (iPSCs), which were derived from mature skin cells. In the second, researchers employed another approach to convert mature mouse endothelial cells, which line the inside of blood vessels, directly into self-renewing HSCs. When these HSCs were transplanted into mice, they fully reconstituted the animals’ blood systems with healthy red and white blood cells.


Simplifying HIV Treatment: A Surprising New Lead

Posted on by

CD4+ cells in the gut

Caption: PET/CT imaging reveals a surprisingly high concentration (yellow, light green) of key immune cells called CD4 T cells in the colon (left) of an SIV-infected animal that received antibody infusions along with antiviral treatment. Fewer immune cells were found in the small intestine (right), while the liver (lower left) shows a high level of non-specific signal (orange).
Credit: Byrareddy et al., Science (2016).

The surprising results of an animal study are raising hopes for a far simpler treatment regimen for people infected with the AIDS-causing human immunodeficiency virus (HIV). Currently, HIV-infected individuals can live a near normal life span if, every day, they take a complex combination of drugs called antiretroviral therapy (ART). The bad news is if they stop ART, the small amounts of HIV that still lurk in their bodies can bounce back and infect key immune cells, called CD4 T cells, resulting in life-threatening suppression of their immune systems.

Now, a study of rhesus macaques infected with a close relative of HIV, the simian immunodeficiency virus (SIV), suggests there might be a new therapeutic option that works by a mechanism that has researchers both excited and baffled [1]. By teaming ART with a designer antibody used to treat people with severe bowel disease, NIH-funded researchers report that they have been able to keep SIV in check in macaques for at least two years after ART is stopped. More research is needed to figure out exactly how the new strategy works, and whether it would also work for humans infected with HIV. However, the findings suggest there may be a way to achieve lasting remission from HIV without the risks, costs, and inconvenience associated with a daily regimen of drugs.


Creative Minds: Can Microbes Influence Mental Health?

Posted on by

Photo of a young woman

Elaine Hsiao
Credit: NIH Common Fund

While sitting in microbiology class as a college sophomore, Elaine Hsiao was stunned to learn that the human gut held between as much as 6 pounds of bacteria—twice the weight of an adult human brain. She went on to learn during her graduate studies in neurobiology that these microbes had co-evolved with humans and played important roles in our bodies, aiding digestion and immune function, for example. But more intriguing to her, by far, was new research that suggested that gut bacteria might even be influencing our thoughts, moods, and behavior.

Now a senior research fellow at the California Institute of Technology, Hsiao is launching her own effort to explore how these microbes can affect brain function—a very creative endeavor made possible through NIH’s Early Independence Award program—also known as the “skip the postdoc” award.


Personalized Cancer Vaccine Enters Human Trials

Posted on by

Photo of a researcher looking at a silver disc held by a curved hemostat

Caption: The new melanoma vaccine, which is implanted beneath the skin, is now being tested in human trials.
Credit: Wyss Institute and Amos Chan

This aspirin-sized disk is the first therapeutic cancer vaccine implanted beneath the skin [1]. We know it can eradicate melanoma in mice—the deadliest form of skin cancer—with impressive efficacy [2]. Now, it’s being tested in human trials.


Previous Page Next Page