Skip to main content

stress

Anxiety Reduction: Exploring the Role of Cannabinoid Receptors

Posted on by Dr. Francis Collins

Green and blue swirls

Caption: Cannabinoid receptor 1 (green) in the mouse brain. All cell nuclei appear blue.
Credit: Margaret Davis, National Institute on Alcohol Abuse and Alcoholism, NIH

Relief of anxiety and stress is one of the most common reasons that people give for using marijuana [1]. But the scientific evidence is rather sparse about whether there’s a biological explanation for that effect.

More than a decade ago, researchers set out to explore the link between marijuana and anxiety reduction, but the results of their experiments were inconclusive [2]. Recently, a team led by NIH-funded researchers at Vanderbilt University Medical Center in Nashville decided to tackle the question again, this time using more sensitive tools that have just become available in recent years.


Creative Minds: Making Sense of Stress and the Brain

Posted on by Dr. Francis Collins

Photo of a woman in front of a chalk board
Amy Arnsten
Credit: Terry Dagradi, Yale School of Medicine

Right behind your forehead lies the most recently evolved region of the human brain: the prefrontal cortex (PFC). It’s a major control center for abstract thinking, thought analysis, working memory, planning, decision making, regulating emotions, and many of the things we most strongly associate with being human. But in times of stress, the PFC is literally taken offline, allowing more primitive parts of the brain to take over.

Amy Arnsten, a neuroscientist at the Yale School of Medicine, New Haven, CT, has pioneered the study of stress on the brain [1] and how impaired regulation of stress response in the PFC contributes to neurological disorders, such as Attention Deficit Hyperactivity Disorder (ADHD), schizophrenia [2, 3], and Alzheimer’s disease [4]. In these disorders, cells in the PFC are negatively affected, while those in the primary sensory cortex, a more primitive part of the brain that processes vision and sound, are thought to remain relatively unscathed. With support from a 2013 NIH Director’s Pioneer Award, Arnsten hopes to uncover why the PFC is more vulnerable to disease than the primary sensory cortex—and how we might be able to prevent or reverse damage to these circuits.


Previous Page