Skip to main content

sound

Sound Advice: High School Music Training Sharpens Language Skills

Posted on by

Band InstrumentsWhen children enter the first grade, their brains are primed for learning experiences, significantly more so, in fact, than adult brains. For instance, scientists have documented that musical training during grade school produces a signature set of benefits for the brain and for behavior—benefits that can last a lifetime, whether or not people continue to play music.

Now, researchers at Northwestern University, Evanston, IL, have some good news for teenagers who missed out on learning to play musical instruments as young kids. Even when musical training isn’t started until high school, it produces meaningful changes in how the brain processes sound. And those changes have positive benefits not only for a teen’s musical abilities, but also for skills related to reading and writing.


Snapshots of Life: The Biological Basis of Hearing

Posted on by

sensory hair cells in a chicken's ear

Credit: Peter Barr-Gillespie and Kateri Spinelli, Oregon Health & Science University, Portland

Did you know that chickens have ears? Well, here’s the evidence—you’re looking at a micrograph of sensory hair cells that make up the inner ear of Gallus gallus domesticus, otherwise known as the domestic chicken. Protruding from each hair cell is a tall bundle of stiff appendages, called stereocilia, that capture vibrations and enable the chicken to hear everything from grain being poured into a feeder to the footsteps of a wily fox. The flatter area is occupied by supporting cells, which have recently been shown to have the capacity to regenerate damaged or destroyed hair cells.

Peter Barr-Gillespie and Kateri Spinelli of Oregon Health & Science University, Portland used a scanning electron microscope to capture this image—one of the winners of the Federation of American Societies for Experimental Biology’s 2014 BioArt competition—while studying how these cells convert sound waves into brain waves. It is generally known that sound waves cause the stereocilia on each hair cell to oscillate in concert. These vibrating stereocilia trigger electrical changes in the hair cells, which then send signals to the brain. Barr-Gillespie’s group focuses on the actual molecules that build the stereocilia and translate the vibrations into brain signals.