Skip to main content

sound

How the Brain Differentiates the ‘Click,’ ‘Crack,’ or ‘Thud’ of Everyday Tasks

Posted on by Lawrence Tabak, D.D.S., Ph.D.

A baseball player hits a ball. The word "crack" is highlighted. The word "thud" has a circle around and a diagonal line through it.
Credit: Donny Bliss, NIH; Shutterstock/Vasyl Shulga

If you’ve been staying up late to watch the World Series, you probably spent those nine innings hoping for superstars Bryce Harper or José Altuve to square up a fastball and send it sailing out of the yard. Long-time baseball fans like me can distinguish immediately the loud crack of a home-run swing from the dull thud of a weak grounder.

Our brains have such a fascinating ability to discern “right” sounds from “wrong” ones in just an instant. This applies not only in baseball, but in the things that we do throughout the day, whether it’s hitting the right note on a musical instrument or pushing the car door just enough to click it shut without slamming.

Now, an NIH-funded team of neuroscientists has discovered what happens in the brain when one hears an expected or “right” sound versus a “wrong” one after completing a task. It turns out that the mammalian brain is remarkably good at predicting both when a sound should happen and what it ideally ought to sound like. Any notable mismatch between that expectation and the feedback, and the hearing center of the brain reacts.

It may seem intuitive that humans and other animals have this auditory ability, but researchers didn’t know how neurons in the brain’s auditory cortex, where sound is processed, make these snap judgements to learn complex tasks. In the study published in the journal Current Biology, David Schneider, New York University, New York, set out to understand how this familiar experience really works.

To do it, Schneider and colleagues, including postdoctoral fellow Nicholas Audette, looked to mice. They are a lot easier to study in the lab than humans and, while their brains aren’t miniature versions of our own, our sensory systems share many fundamental similarities because we are both mammals.

Of course, mice don’t go around hitting home runs or opening and closing doors. So, the researchers’ first step was training the animals to complete a task akin to closing the car door. To do it, they trained the animals to push a lever with their paws in just the right way to receive a reward. They also played a distinctive tone each time the lever reached that perfect position.

After making thousands of attempts and hearing the associated sound, the mice knew just what to do—and what it should sound like when they did it right. Their studies showed that, when the researchers removed the sound, played the wrong sound, or played the correct sound at the wrong time, the mice took notice and adjusted their actions, just as you might do if you pushed a car door shut and the resulting click wasn’t right.

To find out how neurons in the auditory cortex responded to produce the observed behaviors, Schneider’s team also recorded brain activity. Intriguingly, they found that auditory neurons hardly responded when a mouse pushed the lever and heard the sound they’d learned to expect. It was only when something about the sound was “off” that their auditory neurons suddenly crackled with activity.

As the researchers explained, it seems from these studies that the mammalian auditory cortex responds not to the sounds themselves but to how those sounds match up to, or violate, expectations. When the researchers canceled the sound altogether, as might happen if you didn’t push a car door hard enough to produce the familiar click shut, activity within a select group of auditory neurons spiked right as they should have heard the sound.

Schneider’s team notes that the same brain areas and circuitry that predict and process self-generated sounds in everyday tasks also play a role in conditions such as schizophrenia, in which people may hear voices or other sounds that aren’t there. The team hopes their studies will help to explain what goes wrong—and perhaps how to help—in schizophrenia and other neural disorders. Perhaps they’ll also learn more about what goes through the healthy brain when anticipating the satisfying click of a closed door or the loud crack of a World Series home run.

Reference:

[1] Precise movement-based predictions in the mouse auditory cortex. Audette NJ, Zhou WX, Chioma A, Schneider DM. Curr Biology. 2022 Oct 24.

Links:

How Do We Hear? (National Institute on Deafness and Other Communication Disorders/NIH)

Schizophrenia (National Institute of Mental Health/NIH)

David Schneider (New York University, New York)

NIH Support: National Institute of Mental Health; National Institute on Deafness and Other Communication Disorders


Singing for the Fences

Posted on by Dr. Francis Collins

Credit: NIH

I’ve sung thousands of songs in my life, mostly in the forgiving company of family and friends. But, until a few years ago, I’d never dreamed that I would have the opportunity to do a solo performance of the Star-Spangled Banner in a major league ballpark.

When I first learned that the Washington Nationals had selected me to sing the national anthem before a home game with the New York Mets on May 24, 2016, I was thrilled. But then another response emerged: yes, that would be called fear. Not only would I be singing before my biggest audience ever, I would be taking on a song that’s extremely challenging for even the most accomplished performer.

The musician in me was particularly concerned about landing the anthem’s tricky high F note on “land of the free” without screeching or going flat. So, I tracked down a voice teacher who gave me a crash course about how to breathe properly, how to project, how to stay on pitch on a high note, and how to hit the national anthem out of the park. She suggested that a good way to train is to sing the entire song with each syllable replaced by “meow.” It sounds ridiculous, but it helped—try it sometime. And then I practiced, practiced, practiced. I think the preparation paid off, but watch the video to decide for yourself!

Three years later, the scientist in me remains fascinated by what goes on in the human brain when we listen to or perform music. The NIH has even partnered with the John F. Kennedy Center for the Performing Arts to launch the Sound Health initiative to explore the role of music in health. A great many questions remain to be answered. For example, what is it that makes us enjoy singers who stay on pitch and cringe when we hear someone go sharp or flat? Why do some intervals sound pleasant and others sound grating? And, to push that line of inquiry even further, why do we tune into the pitch of people’s voices when they are speaking to help figure out if they are happy, sad, angry, and so on?

To understand more about the neuroscience of pitch, a research team, led by Bevil Conway of NIH’s National Eye Institute, used functional MRI imaging to study activity in the region of the brain involved in processing sound (the auditory cortex), both in humans and in our evolutionary relative, the macaque monkey [1]. For purposes of the study, published recently in Nature Neuroscience, pitch was defined as the harmonic sounds that we hear when listening to music.

For humans and macaques, their auditory cortices lit up comparably in response to low- and high-frequency sound. But only humans responded selectively to harmonic tones, while the macaques reacted to toneless, white noise sounds spanning the same frequency range. Based on what they found in both humans and monkeys, the researchers suspect that macaques experience music and other sounds differently than humans. They also go on to suggest that the perception of pitch must have provided some kind of evolutionary advantage for our ancestors, and has therefore apparently shaped the basic organization of the human brain.

But enough about science and back to the ballpark! In front of 33,009 pitch-sensitive Homo sapiens, I managed to sing our national anthem without audible groaning from the crowd. What an honor it was! I pass along this memory to encourage each of you to test your own pitch this Independence Day. Let’s all celebrate the birth of our great nation. Have a happy Fourth!

Reference:

[1] Divergence in the functional organization of human and macaque auditory cortex revealed by fMRI responses to harmonic tones. Norman-Haignere SV, Kanwisher N, McDermott JH, Conway BR. Nat Neurosci. 2019 Jun 10. [Epub ahead of print]

Links:

Our brains appear uniquely tuned for musical pitch (National Institute of Neurological Diseases and Stroke news release)

Sound Health: An NIH-Kennedy Center Partnership (NIH)

Bevil Conway (National Eye Institute/NIH)

NIH Support: National Institute of Neurological Diseases and Stroke; National Eye Institute; National Institute of Mental Health


Sound Advice: High School Music Training Sharpens Language Skills

Posted on by Dr. Francis Collins

Band Instruments

When children enter the first grade, their brains are primed for learning experiences, significantly more so, in fact, than adult brains. For instance, scientists have documented that musical training during grade school produces a signature set of benefits for the brain and for behavior—benefits that can last a lifetime, whether or not people continue to play music.

Now, researchers at Northwestern University, Evanston, IL, have some good news for teenagers who missed out on learning to play musical instruments as young kids. Even when musical training isn’t started until high school, it produces meaningful changes in how the brain processes sound. And those changes have positive benefits not only for a teen’s musical abilities, but also for skills related to reading and writing.


Snapshots of Life: The Biological Basis of Hearing

Posted on by Dr. Francis Collins

sensory hair cells in a chicken's ear

Credit: Peter Barr-Gillespie and Kateri Spinelli, Oregon Health & Science University, Portland

Did you know that chickens have ears? Well, here’s the evidence—you’re looking at a micrograph of sensory hair cells that make up the inner ear of Gallus gallus domesticus, otherwise known as the domestic chicken. Protruding from each hair cell is a tall bundle of stiff appendages, called stereocilia, that capture vibrations and enable the chicken to hear everything from grain being poured into a feeder to the footsteps of a wily fox. The flatter area is occupied by supporting cells, which have recently been shown to have the capacity to regenerate damaged or destroyed hair cells.

Peter Barr-Gillespie and Kateri Spinelli of Oregon Health & Science University, Portland used a scanning electron microscope to capture this image—one of the winners of the Federation of American Societies for Experimental Biology’s 2014 BioArt competition—while studying how these cells convert sound waves into brain waves. It is generally known that sound waves cause the stereocilia on each hair cell to oscillate in concert. These vibrating stereocilia trigger electrical changes in the hair cells, which then send signals to the brain. Barr-Gillespie’s group focuses on the actual molecules that build the stereocilia and translate the vibrations into brain signals.