How Kids See the World Depends a Lot on Genetics

Baby in eye gaze study

Caption: Child watches video while researchers track his eye movements.
Credit: Washington University School of Medicine, St. Louis

From the time we are born, most of us humans closely watch the world around us, paying special attention to people’s faces and expressions. Now, for the first time, an NIH-funded team has shown that the ways in which children look at faces and many other things are strongly influenced by the genes they’ve inherited from their parents.

The findings come from experiments that tracked the eye movements of toddlers watching videos of other kids or adult caregivers. The experiments showed that identical twins—who share the same genes and the same home environment—spend almost precisely the same proportion of time looking at faces, even when watching different videos. And when identical twins watched the same video, they tended to look at the same thing at almost exactly the same time! In contrast, fraternal twins—who shared the same home environment, but, on average, shared just half of their genes—had patterns of eye movement that were far less similar.

Interestingly, the researchers also found that the visual behaviors most affected in children with autism spectrum disorder (ASD)—attention to another person’s eyes and mouth—were those that also appeared to be the most heavily influenced by genetics. The discovery makes an important connection between two well-known features of ASD: a strong hereditary component and poor eye contact with other people.

Continue reading

LabTV: Curious About a Mother’s Bond

Bianca JonesThe bond between a mother and her child is obviously very special. That’s true not only in humans, but in mice and other animals that feed and care for their young. But what exactly goes on in the brain of a mother when she hears her baby crying? That’s one of the fascinating questions being explored by Bianca Jones Marlin, the young neuroscience researcher featured in this LabTV video.

Currently a postdoctoral fellow at New York University School of Medicine, Marlin is particularly interested in the influence of a hormone called oxytocin, popularly referred to as the “love hormone,” on maternal behaviors. While working on her the lab of Robert Froemke, Marlin tested the behavior and underlying brain responses of female mice—both mothers and non-mothers—upon hearing distress cries of young mice, which are called pups. She also examined how those interactions changed with the addition of oxytocin.

I’m pleased to report that the results of the NIH-funded work Marlin describes in her video appeared recently in the highly competitive journal Nature [1]. And what she found might strike a chord with all the mothers out there. Her studies show that oxytocin makes key portions of the mouse brain more sensitive to the cries of the pups, almost as if someone turned up the volume.

In fact, when Marlin and her colleagues delivered oxytocin to the brains (specifically, the left auditory cortexes) of mice with no pups of their own, they responded like mothers themselves! Those childless mice quickly learned to perk up and fetch pups in distress, returning them to the safety of their nests.

Marlin says her interest in neuroscience arose from her experiences growing up in a foster family. She witnessed some of her foster brothers and sisters struggling with school and learning. As an undergraduate at Saint John’s University in Queens, NY, she earned a dual bachelor’s degree in Biology and Adolescent Education before getting her license to teach 6th through 12th grade Biology. But Marlin soon decided she could have a greater impact by studying how the brain works and gaining a better understanding of the biological mechanisms involved in learning, whether in the classroom or through life experiences, such as motherhood.

Marlin welcomes the opportunity that the lab gives her to “be an explorer”—to ask deep, even ethereal, questions and devise experiments aimed at answering them. “That’s the beauty of science and research,” she says. “To be able to do that the rest of my life? I’d be very happy.”


[1] Oxytocin enables maternal behaviour by balancing cortical inhibition. Marlin BJ, Mitre M, D’amour JA, Chao MV, Froemke RC. Nature. 2015 Apr 23;520(7548):499-504.



Froemke Lab (NYU Langone)

Science Careers (National Institute of General Medical Sciences/NIH)

Careers Blog (Office of Intramural Training/NIH)

Scientific Careers at NIH