Skip to main content

sequencing

Genome Data Help to Track COVID-19 Superspreading Event

Posted on by Dr. Francis Collins

Boston skyline
Credit: iStock/Chaay_Tee

When it comes to COVID-19, anyone, even without symptoms, can be a “superspreader” capable of unknowingly infecting a large number of people and causing a community outbreak. That’s why it is so important right now to wear masks when out in public and avoid large gatherings, especially those held indoors, where a superspreader can readily infect others with SARS-CoV-2, the virus responsible for COVID-19.

Driving home this point is a new NIH-funded study on the effects of just one superspreader event in the Boston area: an international biotech conference held in February, before the public health risks of COVID-19 had been fully realized [1]. Almost a hundred people were infected. But it didn’t end there.

In the study, the researchers sequenced close to 800 viral genomes, including cases from across the first wave of the epidemic in the Boston area. Using the fact that the viral genome changes in very subtle ways over time, they found that SARS-CoV-2 was actually introduced independently to the region more than 80 times, primarily from Europe and other parts of the United States. But the data also suggest that a single superspreading event at the biotech conference led to the infection of almost 20,000 people in the area, not to mention additional COVID-19 cases in other states and around the world.

The findings, posted on medRxiv as a pre-print, come from Bronwyn MacInnis and Pardis Sabeti at the Broad Institute of MIT and Harvard in Cambridge, MA, and their many close colleagues at Massachusetts General Hospital, the Massachusetts Department of Public Health, and the Boston Health Care for the Homeless Program. The initial focus of MacInnis, Sabeti, and their Broad colleagues has been on developing genome data and tools for surveillance of viruses and other infectious diseases in and viral outbreaks in West Africa, including Lassa fever and Ebola virus disease.

Closer to home, they’d expected to focus their attention on West Nile virus and tick-borne diseases. But, when the COVID-19 outbreak erupted, they were ready to pivot quickly to assist several Centers for Disease Control and Prevention (CDC) and state labs in the northeastern United States to use genomic tools to investigate local outbreaks.

It’s been clear from the beginning of the pandemic that COVID-19 cases often arise in clusters, linked to gatherings in places such as cruise ships, nursing homes, and homeless shelters. But the Broad Institute team and their colleagues realized, it’s difficult to see how extensively a virus spreads from such places into the wider community based on case counts alone.

Contact tracing certainly helps to track community spread of the virus. This surveillance strategy depends on quick, efficient identification of an infected individual. It follows up with the identification of all who’ve recently been in close contact with that person, allowing the contacts to self-quarantine and break the chain of transmission.

But contact tracing has its limitations. It’s not always possible to identify all the people that an infected person has been in recent contact with. Genome data, however, is particularly useful after the fact for connecting those dots to get a big picture view of viral transmission.

Here’s how it works: as SARS-CoV-2 spreads, the virus sometimes picks up a new mutation. Those tiny spelling changes in the viral genome usually have no effect on how the virus causes disease, but they do serve as distinct genomic fingerprints. Using those fingerprints to guide the way, researchers can trace the path the virus took through a community and beyond, identifying connections among cases that would be untrackable otherwise.

With this in mind, MacInnis and Sabeti’s team set out to help Boston’s public health officials understand just how the epidemic escalated so quickly in the Boston area, and just how much the February conference had contributed to community transmission of the virus. They also investigated other case clusters in the area, including within a skilled nursing facility, homeless shelters, and at Massachusetts General Hospital itself, to understand the spread of COVID-19 in these settings.

Based on contact tracing, officials had already connected approximately 90 cases of COVID-19 to the biotech conference, 28 of which were included in the original 772 viral genomes in this dataset. Based on the distinct genomic fingerprint carried by the 28 genomes, the researchers went on to discover that more than one-third of Boston area cases without any known link to the conference could indeed be traced back to the event.

When the researchers considered this proportion to the number of cases recorded in the region during the study, they extrapolated that the superspreader event led to nearly 20,000 cases in the Boston area. In contrast, the genome data show cases linked to another superspreader event that took place within a skilled nursing facility, while devastating to the residents, had much less of an impact on the surrounding community.

The analysis also uncovered some unexpected connections. The dataset showed that SARS-CoV-2 was brought to clients and staff at the Boston Health Care for the Homeless Program at least seven times. Remarkably, two of those introductions also traced back to the biotech conference. Researchers also found infections in Chelsea, Revere, and Everett, which were some of the hardest hit communities in the Boston area, that were connected to the original superspreading event.

There was some reassuring news about how precautions in hospitals are working. The researchers examined cases that were diagnosed among patients at Massachusetts General Hospital, raising concerns that the virus might have spread from one patient to another within the hospital. But the genome data show that those cases, in fact, weren’t part of the same transmission chain. They may have contracted the virus before they were hospitalized. Or it’s possible that staff may have inadvertently brought the virus into the hospital. But there was no patient-to-patient transmission.

Massachusetts is one of the states in which the COVID-19 pandemic had a particularly severe early impact. As such, these results present broadly applicable lessons for other states and urban areas about how the virus spreads. The findings highlight the value of genomic surveillance, along with standard contact tracing, for better understanding of viral transmission in our communities and improved prevention of future outbreaks.

Reference:

[1] Phylogenetic analysis of SARS-CoV-2 in the Boston area highlights the role of recurrent importation and superspreading events. Lemieux J. et al. medRxiv. August 25, 2020.

Links:

Coronavirus (COVID-19) (NIH)

Bronwyn MacInnis (Broad Institute of Harvard and MIT, Cambridge, MA)

Sabeti Lab (Broad Institute of Harvard and MIT)

NIH Support: National Institute of Allergy and Infectious Diseases; National Human Genome Research Institute; National Institute of General Medical Sciences


Whole-Genome Sequencing Plus AI Yields Same-Day Genetic Diagnoses

Posted on by Dr. Francis Collins

Sebastiana
Caption: Rapid whole-genome sequencing helped doctors diagnose Sebastiana Manuel with Ohtahara syndrome, a neurological condition that causes seizures. Her data are now being used as part of an effort to speed the diagnosis of other children born with unexplained illnesses. Credits: Getty Images (left); Jenny Siegwart (right).



Back in April 2003, when the international Human Genome Project successfully completed the first reference sequence of the human DNA blueprint, we were thrilled to have achieved that feat in just 13 years. Sure, the U.S. contribution to that first human reference sequence cost an estimated $400 million, but we knew (or at least we hoped) that the costs would come down quickly, and the speed would accelerate. How far we’ve come since then! A new study shows that whole genome sequencing—combined with artificial intelligence (AI)—can now be used to diagnose genetic diseases in seriously ill babies in less than 24 hours.

Take a moment to absorb this. I would submit that there is no other technology in the history of planet Earth that has experienced this degree of progress in speed and affordability. And, at the same time, DNA sequence technology has achieved spectacularly high levels of accuracy. The time-honored adage that you can only get two out of three for “faster, better, and cheaper” has been broken—all three have been dramatically enhanced by the advances of the last 16 years.

Rapid diagnosis is critical for infants born with mysterious conditions because it enables them to receive potentially life-saving interventions as soon as possible after birth. In a study in Science Translational Medicine, NIH-funded researchers describe development of a highly automated, genome-sequencing pipeline that’s capable of routinely delivering a diagnosis to anxious parents and health-care professionals dramatically earlier than typically has been possible [1].

While the cost of rapid DNA sequencing continues to fall, challenges remain in utilizing this valuable tool to make quick diagnostic decisions. In most clinical settings, the wait for whole-genome sequencing results still runs more than two weeks. Attempts to obtain faster results also have been labor intensive, requiring dedicated teams of experts to sift through the data, one sample at a time.

In the new study, a research team led by Stephen Kingsmore, Rady Children’s Institute for Genomic Medicine, San Diego, CA, describes a streamlined approach that accelerates every step in the process, making it possible to obtain whole-genome test results in a median time of about 20 hours and with much less manual labor. They propose that the system could deliver answers for 30 patients per week using a single genome sequencing instrument.

Here’s how it works: Instead of manually preparing blood samples, his team used special microbeads to isolate DNA much more rapidly with very little labor. The approach reduced the time for sample preparation from 10 hours to less than three. Then, using a state-of-the-art DNA sequencer, they sequence those samples to obtain good quality whole genome data in just 15.5 hours.

The next potentially time-consuming challenge is making sense of all that data. To speed up the analysis, Kingsmore’s team took advantage of a machine-learning system called MOON. The automated platform sifts through all the data using artificial intelligence to search for potentially disease-causing variants.

The researchers paired MOON with a clinical language processing system, which allowed them to extract relevant information from the child’s electronic health records within seconds. Teaming that patient-specific information with data on more than 13,000 known genetic diseases in the scientific literature, the machine-learning system could pick out a likely disease-causing mutation out of 4.5 million potential variants in an impressive 5 minutes or less!

To put the system to the test, the researchers first evaluated its ability to reach a correct diagnosis in a sample of 101 children with 105 previously diagnosed genetic diseases. In nearly every case, the automated diagnosis matched the opinions reached previously via the more lengthy and laborious manual interpretation of experts.

Next, the researchers tested the automated system in assisting diagnosis of seven seriously ill infants in the intensive care unit, and three previously diagnosed infants. They showed that their automated system could reach a diagnosis in less than 20 hours. That’s compared to the fastest manual approach, which typically took about 48 hours. The automated system also required about 90 percent less manpower.

The system nailed a rapid diagnosis for 3 of 7 infants without returning any false-positive results. Those diagnoses were made with an average time savings of more than 22 hours. In each case, the early diagnosis immediately influenced the treatment those children received. That’s key given that, for young children suffering from serious and unexplained symptoms such as seizures, metabolic abnormalities, or immunodeficiencies, time is of the essence.

Of course, artificial intelligence may never replace doctors and other healthcare providers. Kingsmore notes that 106 years after the invention of the autopilot, two pilots are still required to fly a commercial aircraft. Likewise, health care decisions based on genome interpretation also will continue to require the expertise of skilled physicians.

Still, such a rapid automated system will prove incredibly useful. For instance, this system can provide immediate provisional diagnosis, allowing the experts to focus their attention on more difficult unsolved cases or other needs. It may also prove useful in re-evaluating the evidence in the many cases in which manual interpretation by experts fails to provide an answer.

The automated system may also be useful for periodically reanalyzing data in the many cases that remain unsolved. Keeping up with such reanalysis is a particular challenge considering that researchers continue to discover hundreds of disease-associated genes and thousands of variants each and every year. The hope is that in the years ahead, the combination of whole genome sequencing, artificial intelligence, and expert care will make all the difference in the lives of many more seriously ill babies and their families.

Reference:

[1] Diagnosis of genetic diseases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and interpretation. Clark MM, Hildreth A, Batalov S, Ding Y, Chowdhury S, Watkins K, Ellsworth K, Camp B, Kint CI, Yacoubian C, Farnaes L, Bainbridge MN, Beebe C, Braun JJA, Bray M, Carroll J, Cakici JA, Caylor SA, Clarke C, Creed MP, Friedman J, Frith A, Gain R, Gaughran M, George S, Gilmer S, Gleeson J, Gore J, Grunenwald H, Hovey RL, Janes ML, Lin K, McDonagh PD, McBride K, Mulrooney P, Nahas S, Oh D, Oriol A, Puckett L, Rady Z, Reese MG, Ryu J, Salz L, Sanford E, Stewart L, Sweeney N, Tokita M, Van Der Kraan L, White S, Wigby K, Williams B, Wong T, Wright MS, Yamada C, Schols P, Reynders J, Hall K, Dimmock D, Veeraraghavan N, Defay T, Kingsmore SF. Sci Transl Med. 2019 Apr 24;11(489).

Links:

DNA Sequencing Fact Sheet (National Human Genome Research Institute/NIH)

Genomics and Medicine (NHGRI/NIH)

Genetic and Rare Disease Information Center (National Center for Advancing Translational Sciences/NIH)

Stephen Kingsmore (Rady Children’s Institute for Genomic Medicine, San Diego, CA)

NIH Support: National Institute of Child Health and Human Development; National Human Genome Research Institute; National Center for Advancing Translational Sciences


Ferreting Out Genomic Secrets

Posted on by Dr. Francis Collins

Ferret

Ferret in a Colorado conservation center, U.S. Fish and Wildlife Service

Not only is the ferret (Mustela putorius furo) adept at navigating a dirt field or threading electrical cables through piping (in New Zealand, ferrets can be registered as electrician assistants), this furry 5-pounder ranks as a real heavyweight for studying respiratory diseases. In fact, much of our current thinking about influenza is influenced by research with ferrets.

Now, the ferret will stand out even more. As reported online in Nature Biotechnology, NIH-funded researchers recently sequenced the genome of the sable ferret, the type that is bred in the United States as a pet. By studying this genetic blueprint like an explorer would a map, scientists can perform experiments to learn more systematically how the ferret copes biologically with common or emerging respiratory pathogens, pointing the way to improved strategies to preserve the health and well being of humans and ferrets alike.


From Ebola Researchers, An Anthem of Hope

Posted on by Dr. Francis Collins

One Truth Video screenshot

After watching this music video, you might wonder what on earth it has to do with biomedical science, let alone Ebola research. The answer is everything.

This powerful song, entitled “One Truth,” is dedicated to all of the brave researchers, healthcare workers, and others who have put their lives on the line to save people during the recent outbreak of Ebola virus disease. What’s more, it was written and performed by seven amazing scientists—one from the United States and six from West Africa.


Copying and Reading the Book of Life Inside One Cell, Accurately

Posted on by Dr. Francis Collins

Microwell strip

Caption: The genome researchers collaborated with materials science engineers to create the arrays of microwells or compartments that each capture a single cell.
Credit: UC San Diego Jacobs School of Engineering

Decoding the complete DNA genome in a single cell has been a major goal of technology developers. But the methods aren’t quite able to deal with that yet.  So, for scientists to do this, they first need to make multiple copies of the DNA inside. Until now, the copying technology hasn’t been as accurate as scientists would like. If you think of the genome like a book, then our current copiers replicate certain chapters thousands of times, others just a few, and some not at all. As you can imagine, if you tried to read one of these copies, you’d be quite confused—and you certainly couldn’t rely on your reading for any medical purposes.

Now, NIH-funded researchers at the University of California, San Diego, have developed a new molecular technique that can accurately and uniformly copy the DNA inside a single cell [1]. Using this technique, they’ve already made some surprising discoveries.


DNA’s Double Anniversary

Posted on by Dr. Francis Collins

Images of the first publication of DNA's structure adjacent to the image on the cover of the published human genome

April 25 is a very special day. In 2003, Congress declared April 25th DNA Day to mark the date that James Watson and Francis Crick published their seminal one-page paper in Nature [1] describing the helical structure of DNA. That was 60 years ago. In that single page, they revealed how organisms elegantly store biological information and pass it from generation to generation; they discovered the molecular basis of evolution; and they effectively launched the era of modern biology.

But that’s not all that’s special about this date. It was ten years ago this month that we celebrated the completion of all of the original goals of the Human Genome Project (HGP), which produced a reference sequence of the 3 billion DNA letters that make up the instruction book for building and maintaining a human being. The $3 billion, 13-year project involved more than 2,000 scientists from six countries. As the scientist tasked with leading that effort, I remain immensely proud of the team. They worked tirelessly and creatively to do something once thought impossible, never worrying about who got the credit, and giving all of the data away immediately so that anyone who had a good idea about how to use it for human benefit could proceed immediately. Biology will never be the same. Medical research will never be the same.