Skip to main content

prefrontal cortex

Creative Minds: Making Sense of Stress and the Brain

Posted on by

Photo of a woman in front of a chalk board

Amy Arnsten
Credit: Terry Dagradi, Yale School of Medicine

Right behind your forehead lies the most recently evolved region of the human brain: the prefrontal cortex (PFC). It’s a major control center for abstract thinking, thought analysis, working memory, planning, decision making, regulating emotions, and many of the things we most strongly associate with being human. But in times of stress, the PFC is literally taken offline, allowing more primitive parts of the brain to take over.

Amy Arnsten, a neuroscientist at the Yale School of Medicine, New Haven, CT, has pioneered the study of stress on the brain [1] and how impaired regulation of stress response in the PFC contributes to neurological disorders, such as Attention Deficit Hyperactivity Disorder (ADHD), schizophrenia [2, 3], and Alzheimer’s disease [4]. In these disorders, cells in the PFC are negatively affected, while those in the primary sensory cortex, a more primitive part of the brain that processes vision and sound, are thought to remain relatively unscathed. With support from a 2013 NIH Director’s Pioneer Award, Arnsten hopes to uncover why the PFC is more vulnerable to disease than the primary sensory cortex—and how we might be able to prevent or reverse damage to these circuits.


Shining a Bright Light on Cocaine Addiction

Posted on by

Image of a slice of a brain stained blue with fluorescent green section at the top center

Caption: Optogenetic stimulation using laser pulses lights up the prelimbic cortex
Source: Courtesy of Billy Chen and Antonello Bonci

Wow—there is a lot of exciting brain research in progress, and this week is no exception. A team here at NIH, collaborating with scientists at the University of California in San Francisco, delivered harmless pulses of laser light to the brains of cocaine-addicted rats, blocking their desire for the narcotic.

If that sounds a bit way out, I can assure you the approach is based on some very solid evidence suggesting that people—and rats—are more vulnerable to addiction when a region of their brain in the prefrontal cortex isn’t functioning properly. Brain imaging studies show that rat and human addicts have less activity in the region compared with healthy individuals; and chronic cocaine use makes the problem of low activity even worse. The prefrontal cortex is critical for decision-making, impulse control, and behavior; it helps you weigh the negative consequences of drug use.


Previous Page