Skip to main content

Precision Medicine Initiative

Big Data Study Reveals Possible Subtypes of Type 2 Diabetes

Posted on by

Computational model

Caption: Computational model showing study participants with type 2 diabetes grouped into three subtypes, based on similarities in data contained in their electronic health records. Such information included age, gender (red/orange/yellow indicates females; blue/green, males), health history, and a range of routine laboratory and medical tests.
Credit: Dudley Lab, Icahn School of Medicine at Mount Sinai, New York

In recent years, there’s been a lot of talk about how “Big Data” stands to revolutionize biomedical research. Indeed, we’ve already gained many new insights into health and disease thanks to the power of new technologies to generate astonishing amounts of molecular data—DNA sequences, epigenetic marks, and metabolic signatures, to name a few. But what’s often overlooked is the value of combining all that with a more mundane type of Big Data: the vast trove of clinical information contained in electronic health records (EHRs).

In a recent study in Science Translational Medicine  [1], NIH-funded researchers demonstrated the tremendous potential of using EHRs, combined with genome-wide analysis, to learn more about a common, chronic disease—type 2 diabetes. Sifting through the EHR and genomic data of more than 11,000 volunteers, the researchers uncovered what appear to be three distinct subtypes of type 2 diabetes. Not only does this work have implications for efforts to reduce this leading cause of death and disability, it provides a sneak peek at the kind of discoveries that will be made possible by the new Precision Medicine Initiative’s national research cohort, which will enroll 1 million or more volunteers who agree to share their EHRs and genomic information.

Bold Blueprint for Precision Medicine Initiative’s Research Cohort

Posted on by

Twitter Chat

Caption: #PMINetwork Twitter chat with @NIHDirector Francis Collins, NIH Media Branch’s @RenateMyles, and, in background, PMI Cohort Program Acting Director @NCCIH_Josie Briggs.
Credit: @KathyHudsonNIH

Readers of this blog know how excited I am about the potential of precision medicine for revolutionizing efforts to treat disease and improve human health. So, it stands to reason that I’m delighted by the positive reactions of researchers, health professionals, and the public to a much-anticipated report from the Precision Medicine Initiative (PMI) Working Group of the Advisory Committee to the NIH Director. Topping the report’s list of visionary recommendations? Build a national research cohort of 1 million or more Americans over the next three to four years to expand knowledge and practice of precision medicine.

When the President announced PMI during his 2015 State of the Union address, he envisioned a precise new era in medicine in which every patient receives the right treatment at the right time—an era in which health care professionals have the resources at hand to take into account individual differences in genes, environments, and lifestyles that contribute to disease. To achieve this, PMI’s national research cohort would tap into recent advances in science, technology, and research participation policies to build the knowledge base needed to develop individualized care for all diseases and conditions.

Precision Oncology: Creating a Genomic Guide for Melanoma Therapy

Posted on by

Melanoma cell

Caption: Human malignant melanoma cell viewed through a fluorescent, laser-scanning confocal microscope. Invasive structures involved in metastasis appear as greenish-yellow dots, while actin (green) and vinculin (red) are components of the cell’s cytoskeleton.
Credit: Vira V. Artym, National Institute of Dental and Craniofacial Research, NIH

It’s still the case in most medical care systems that cancers are classified mainly by the type of tissue or part of the body in which they arose—lung, brain, breast, colon, pancreas, and so on. But a radical change is underway. Thanks to advances in scientific knowledge and DNA sequencing technology, researchers are identifying the molecular fingerprints of various cancers and using them to divide cancer’s once-broad categories into far more precise types and subtypes. They are also discovering that cancers that arise in totally different parts of the body can sometimes have a lot in common. Not only can molecular analysis refine diagnosis and provide new insights into what’s driving the growth of a specific tumor, it may also point to the treatment strategy with the greatest chance of helping a particular patient.

The latest cancer to undergo such rigorous, comprehensive molecular analysis is malignant melanoma. While melanoma can rarely arise in the eye and a few other parts of the body, this report focused on the more familiar “cutaneous melanoma,” a deadly and increasingly common form of skin cancer [1].  Reporting in the journal Cell [2], The Cancer Genome Atlas (TCGA) Network says it has identified four distinct molecular subtypes of melanoma. In addition, the NIH-funded network identified an immune signature that spans all four subtypes. Together, these achievements establish a much-needed framework that may guide decisions about which targeted drug, immunotherapy, or combination of therapies to try in an individual with melanoma.

Blood Sugar Control for Diabetes: Asking the Heart Questions

Posted on by

Glucose testing

Credit: Thinkstock

When most people think about risk factors for cardiovascular disease, they likely think of blood pressure readings or cholesterol levels. But here’s something else that should be high on that list: diabetes. That’s because people with diabetes are roughly twice as likely to die of heart disease than other folks [1]. Yet the issue of how best to help such people lower their cardiovascular risks remains a matter of intense debate. Some studies have suggested that part of the answer may lie in tightly controlling blood sugar (glucose) levels with a strict regimen of medications and monitoring [2]. Other research has shown that the intense effort needed to keep blood glucose levels under tight control might not be worth it and may even make things worse for certain individuals [3].

Now, a follow up of a large, clinical trial involving nearly 1,800 U.S. military veterans with type 2 diabetes—the most common form of diabetes—provides further evidence that tight blood glucose control may indeed protect the cardiovascular system. Reporting in The New England Journal of Medicine [4], researchers found a significant reduction in a composite measure of heart attacks, strokes, heart failure, and circulation-related amputations among the vets who maintained tight glucose control for about five and a half years on average. What’s particularly encouraging is most of the cardiovascular-protective benefit appears to be achievable through relatively modest, rather than super strict, reductions in blood glucose levels.

A Surprising Match: Cancer Immunotherapy and Mismatch Repair

Posted on by

Anti-PD-1 Immunotherapy

How Anti-PD-1 Immunotherapy Works. Before immunotherapy (top), the tumor cell’s PD-1 ligand, or PD-L1, molecule (red) binds to a type of white blood cell called a T-cell in a way that enables the tumor cell to evade destruction by the immune system. During immunotherapy (bottom), an anti-PD-1 inhibitor drug (bright green) blocks PD-L1 binding, enabling the T cell to target the tumor cell for destruction.
Credit: NIH

Mismatch repair genes have long been a source of fascination to basic biologists. Normally, these genes serve to fix the small glitches that occur when DNA is copied as cells divide. Most of the original work was done in bacteria, with no expectation of medical relevance. But, as often happens, basic science studies can provide a profoundly important foundation for advances in human health. The relevance of mismatch repair to cancer was dramatically revealed in 1993, when teams led by Bert Vogelstein of Johns Hopkins University School of Medicine, Baltimore, and Richard Kolodner, then of Harvard Medical School, Boston, discovered that mutations in human mismatch repair genes play a key role in the development of certain forms of colorectal cancer [1, 2].

That discovery has led to the ability to identify individuals who have inherited misspellings in these mismatch repair genes and are at high risk for colorectal cancer, providing an opportunity to personalize screening by starting colonoscopy at a very early age and, thereby, saving many lives. But now a new consequence of this work has appeared. Vogelstein and his colleagues report that mismatch repair research may help fight cancer in a way that few would have foreseen two decades ago: predicting which cancer patients are most likely to respond to a new class of immunotherapy drugs, called anti-programmed death 1 (PD-1) inhibitors.

Previous Page Next Page