Precision Medicine Initiative
Creative Minds: Building a Better Electronic Health Record
Posted on by Dr. Francis Collins
Is 5 too few and 40 too many? That’s one of many questions that researcher David Chan is asking about the clinical reminders embedded into those electronic health record (EHR) systems increasingly used at your doctor’s office or local hospital. Electronic reminders, which are similar to the popups that appear when installing software on your computer, flag items for healthcare professionals to consider when they are seeing patients. Depending on the type of reminder used in the EHR—and there are many types—these timely messages may range from a simple prompt to write a prescription to complex recommendations for follow-up testing and specialist referrals.
Chan became interested in this topic when he was a resident at Brigham and Women’s Hospital in Boston, where he experienced the challenges of seeing many patients and keeping up with a deluge of health information in a primary-care setting. He had to write prescriptions, schedule lab tests, manage chronic conditions, and follow up on suggested lifestyle changes, such as weight loss and smoking cessation. In many instances, he says electronic reminders eased his burden and facilitated his efforts to provide high quality care to patients.
Targeting Cystic Fibrosis: Are Two Drugs Better than One?
Posted on by Dr. Francis Collins

Caption: Doctor with a child with cystic fibrosis who is taking part in clinical research studies. Credit: Colorado Clinical and Translational Sciences Institute
To explain the many challenges involved in turning scientific discoveries into treatments and cures, I often say, “Research is not a 100-yard dash, it’s a marathon.” Perhaps there is no better example of this than cystic fibrosis (CF). Back in 1989, I co-led the team that identified the cystic fibrosis transmembrane conductance regulator (CFTR) gene—the gene responsible for this life-shortening, inherited disease that affects some 70,000 people worldwide [1]. Yet, it has taken more than 25 years of additional basic, translational, and clinical research to reach the point where we are today: seeing the emergence of precise combination drug therapy that may help about half of all people with CF.
CF is a recessive disease—that is, affected individuals have a misspelling of both copies of CFTR, one inherited from each parent; the parents are asymptomatic carriers. The first major advance in designer drug treatment for CF came in 2012, when the Food and Drug Administration (FDA) approved ivacaftor (Kalydeco™), the first drug to target specifically CF’s underlying molecular cause [2]. Exciting news, but the rub was that ivacaftor was expected to help only about 4 percent of CF patients—those who carry a copy of the relatively rare G551D mutation (that means a normal glycine at position 551 in the 1480 amino acid protein has been changed to aspartic acid) in CFTR. What could be done for the roughly 50 percent of CF patients who carry two copies of the far more common F508del mutation (that means a phenylalanine at position 508 is missing)? New findings show one answer may be to team ivacaftor with an experimental drug called lumacaftor.
Hitting the Right Target? Lab Studies Suggest Epigenetic Drug May Fight Childhood Brain Cancer
Posted on by Dr. Francis Collins

Caption: Remembering a few of the many children who’ve died of DIPG; Left, Lyla Nsouli and parents; upper right, Andrew Smith and mom; lower right, Alexis Agin and parents.
Credits: Nsouli, Smith, and Agin families
Every year in the United States, several hundred children and their families receive a devastating diagnosis: diffuse intrinsic pontine glioma (DIPG). Sadly, this inoperable tumor of the brain stem, little known by the public, is almost always fatal, and efforts to develop life-saving treatments have been hampered by a lack of molecular data to identify agents that might specifically target DIPG. In fact, more than 200 clinical trials of potential drugs have been conducted in DIPG patients without any success.
Now, using cell lines and mouse models created with tumor tissue donated by 16 DIPG patients, an international research coalition has gained a deeper understanding of this childhood brain cancer at the molecular level. These new preclinical tools have also opened the door to identifying more precise targets for DIPG therapy, including the exciting possibility of using a drug already approved for another type of cancer.
Knocking Out Melanoma: Does This Triple Combo Have What It Takes?
Posted on by Dr. Francis Collins
It would be great if we could knock out cancer with a single punch. But the more we learn about cancer’s molecular complexities and the immune system’s response to tumors, the more it appears that we may need a precise combination of blows to defeat a patient’s cancer permanently, with no need for a later rematch. One cancer that provides us with a ringside seat on the powerful potential—and tough challenges—of targeted combination therapy is melanoma, especially the approximately 50% of advanced tumors with a specific “driver” mutation in the BRAF gene [1].
Drugs that target cells carrying BRAF mutations initially provided great hope for melanoma, with many reports of dramatic shrinkage of tumors in patients with advanced disease. But almost invariably, the disease recurred and was no longer responsive to those same drugs. A few years ago, researchers thought they’d come up with a solid combination to fight BRAF-mutant melanoma: a one-two punch that paired a BRAF-inhibiting drug with an agent that sensitized the immune system [2]. However, when that combo was tested in humans, the clinical trial had to be stopped early because of serious liver toxicity [3]. Now, in a mouse study published in Science Translational Medicine, NIH-funded researchers at the University of California, Los Angeles (UCLA) provide renewed hope for a safe, effective combination therapy for melanoma—with a strategy that adds a third drug to the mix [4].
Precision Medicine: Who Benefits from Aspirin to Prevent Colorectal Cancer?
Posted on by Dr. Francis Collins
In recent years, scientific evidence has begun to accumulate that indicates taking aspirin or other non-steroidal anti-inflammatory drugs (NSAIDs) on a daily basis may lower the risk of developing colorectal cancer. Now, a new study provides more precise information on who might benefit from this particular prevention strategy, as well as who might not.
Published in the journal JAMA, the latest work shows that, for the majority of people studied, regular use of aspirin or NSAIDs was associated with about a one-third lower risk of developing colorectal cancer. But the international research team, partly funded by NIH, also found that not all regular users of aspirin/NSAIDs reaped such benefits—about 9 percent experienced no reduction in colorectal cancer risk and 4 percent actually appeared to have an increased risk [1]. Was this just coincidence, or might there be a biological explanation?
Head and Neck Cancer: Building the Evidence Base for Precision Oncology
Posted on by Dr. Francis Collins

Caption: Triple immunohistochemical stained oral squamous cell carcinoma: nuclei in brown, cytoplasm in red, and cytoplasmic membranes in blue green.
Credit: Alfredo A. Molinolo, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH
An exciting new era in cancer research is emerging, called precision oncology. It builds on decades of research establishing that cancers start with glitches in the genome, the cell’s instruction book. Researchers have now identified numerous ways that mutations in susceptible genes can drive the cancer process. Knowing where and how to look for them brings greater precision to diagnosing cancers and gives doctors key clues about which treatments might work and which ones won’t.
To build a firmer evidence base for precision oncology, more and more cancer genomes, from many different body sites, must be analyzed for clues about the drivers of the malignant process. That’s why it’s always exciting to see a new genomic analysis that adds substantially to our understanding of a common tumor. The latest to appear, published online at the journal Nature, comes from an NIH-supported study on the most common type of head and neck cancer, called squamous cell carcinoma. The technologically advanced analysis confirms that many previously suspected genes do indeed play a role in head and neck cancer. But that’s not all. The new data also identify several previously unknown subtypes of this cancer. The first descriptions of the abnormal molecular wiring in these subtypes are outlined, suggesting possible strategies to neutralize or destroy the cancer cells. That’s potentially good news to help guide and inform the treatment of the estimated 55,000 Americans who are diagnosed with a head and neck cancer each year.
Previous Page