Skip to main content

pharmaceutical industry

Crowdsourcing Therapeutic Molecules for Drug Discovery

Posted on by

An assortment of pills, vials, and bottles containing liquid, against white background

Caption: The Discovering New Therapeutic Uses for Existing Molecules pilot program matches researchers with pharmaceutical compounds to explore new treatments for patients

Developing a drug takes time and money: on the average, around 14 years and $2 billion or more. More than 95 percent of the drugs fail during development. Even those that go all the way to large and expensive clinical trials in humans frequently don’t make the cut—perhaps because they weren’t quite as effective as they were supposed to be, had undesirable side effects, or didn’t align with the developer’s business priorities. But some of these compounds may have surprising therapeutic properties that have not yet been fully exploited. It would be a wasted opportunity not to take another look at them and test them for effectiveness in other conditions.

For that reason, our National Center for Advancing Translational Sciences (NCATS), with financial support from the NIH Common Fund, launched a pilot program to discover new therapeutic uses for existing molecules. Today we are awarding $12.7 million to nine academic institutions to reexamine a collection of compounds developed by major pharmaceutical companies and test them as treatments for diseases, both common and rare: from alcoholism and Alzheimer’s disease to Duchenne muscular dystrophy and schizophrenia.


Of Mice, Men, and Medicine

Posted on by

Photo of someone holding the lab on a chip device next to a photo of two laboratory mice

Will a chip challenge the mouse?
Source: Wyss Institute and Bill Branson, NIH

The humble laboratory mouse has taught us a phenomenal amount about embryonic development, disease, and evolution. And, for decades, the pharmaceutical industry has relied on these critters to test the safety and efficacy of new drug candidates. If it works in mice, so we thought, it should work in humans. But when it comes to molecules designed to target a sepsis-like condition, 150 drugs that successfully treated this condition in mice later failed in human clinical trials—a heartbreaking loss of decades of research and billions of dollars. A new NIH-funded study [1] reveals why.