Skip to main content

PET scan

Feed a Virus, Starve a Bacterium?

Posted on by

Woman eating hot soup in bed

Thinkstock/Stockbyte

Yes, the season of colds and flu is coming. You’ve probably heard the old saying “feed a cold and starve a fever.” But is that sound advice? According to new evidence from mouse studies, there really may be a scientific basis for “feeding” diseases like colds and flu that are caused by viruses, as well as for “starving” certain fever-inducing conditions caused by bacteria.

In the latest work, an NIH-funded research team found that providing nutrition to mice infected with the influenza virus significantly improved their survival. In contrast, the exact opposite proved true in mice infected with Listeria, a fever-inducing bacterium. When researchers forced Listeria-infected mice to consume even a small amount of food, they all died.


Brain Imaging: Tackling Chronic Traumatic Encephalopathy

Posted on by

Brain scans of CTE and AD

Caption: Left to right, brain PET scans of healthy control; former NFL player with suspected chronic traumatic encephalopathy (CTE); and person with Alzheimer’s disease (AD). Areas with highest levels of abnormal tau protein appear red/yellow; medium, green; and lowest, blue.
Credit: Adapted from Barrio et al., PNAS

If you follow the National Football League (NFL), you may have heard some former players describe their struggles with a type of traumatic brain injury called chronic traumatic encephalopathy (CTE). Known to be associated with repeated, hard blows to the head, this neurodegenerative disorder can diminish the ability to think critically, slow motor skills, and lead to volatile, even suicidal, mood swings. What’s doubly frustrating to both patients and physicians is that CTE has only been possible to diagnose conclusively after death (via autopsy) because it’s indistinguishable from many other brain conditions with current imaging methods.

But help might be starting to move out of the backfield toward the goal line of more accurate diagnosis. In findings published in the journal PNAS [1], NIH-supported scientists from the University of California, Los Angeles (UCLA) and the University of Chicago report they’ve made some progress toward imaging CTE in living people. Following up on their preliminary work published in 2013 [2], the researchers used a specially developed radioactive tracer that lights up a neural protein, called tau, known to deposit in certain areas of the brain in individuals with CTE. They used this approach on PET scans of the brains of 14 former NFL players suspected of having CTE, generating maps of tau distribution throughout various regions of the brain.