Skip to main content

parasite

Gene Drive Research Takes Aim at Malaria

Posted on by

Mosquitoes and a Double HelixMalaria has afflicted humans for millennia. Even today, the mosquito-borne, parasitic disease claims more than a half-million lives annually [1]. Now, in a study that has raised both hope and concern, researchers have taken aim at this ancient scourge by using one of modern science’s most powerful new technologies—the CRISPR/Cas9 gene-editing tool—to turn mosquitoes from dangerous malaria vectors into allies against infection [2].

The secret behind this new strategy is the “gene drive,” which involves engineering an organism’s genome in a way that intentionally spreads, or drives, a trait through its population much faster than is possible by normal Mendelian inheritance. The concept of gene drive has been around since the late 1960s [3]; but until the recent arrival of highly precise gene editing tools like CRISPR/Cas9, the approach was largely theoretical. In the new work, researchers inserted into a precise location in the mosquito chromosome, a recombinant DNA segment designed to block transmission of malaria parasites. Importantly, this segment also contained a gene drive designed to ensure the trait was inherited with extreme efficiency. And efficient it was! When the gene-drive engineered mosquitoes were mated with normal mosquitoes in the lab, they passed on the malaria-blocking trait to 99.5 percent of their offspring (as opposed to 50 percent for Mendelian inheritance).


Enlisting mHealth in the Fight Against River Blindness

Posted on by

CellScope Loa

When it comes to devising new ways to provide state-of-the art medical care to people living in remote areas of the world, smartphones truly are helping scientists get smarter. For example, an NIH-supported team working in Central Africa recently turned an iPhone into a low-cost video microscope capable of quickly testing to see if people infected with a parasitic worm called Loa loa can safely receive a drug intended to protect them from a different, potentially blinding parasitic disease.

As shown in the video above, the iPhone’s camera scans a drop of a person’s blood for the movement of L. loa worms. Customized software then processes the motion to count the worms (see the dark circles) in the blood sample and arrive at an estimate of the body’s total worm load. The higher the worm load, the greater the risk of developing serious side effects from a drug treatment for river blindness, also known as onchocerciasis.


Snapshots of Life: NIH’s BioArt Winners

Posted on by

Brick wall adorned with poster-sized prints of winning photos

Credit: FASEB

If you follow my blog, you know that I like to feature spectacular images that scientists have created during the course of their research. These images are rarely viewed outside the lab, but some are so worthy of artistic merit and brimming with educational value that they deserve a wider audience. That’s one reason why the Federation of American Societies for Experimental Biology (FASEB) launched its BioArt contest. Of the 12 winners in 2013, I’m proud to report that 11 received support from NIH. In fact, I’m so proud that I plan to showcase their work in an occasional series entitled “Snapshots of Life.” Continue reading to see the first installment—enjoy!


Spiny Worm Inspires Next-Gen Band-Aid

Posted on by

Drawing of a lemon-yellow segmented worm with a spiny head adjacent to a photo of a transparent spiny square resting on top of a fingertip

Caption: Artist rendition of spiny headed worm │The adhesive patch with microneedles that swell
Source: The Karp Lab, Brigham and Women’s Hospital

Inspiration can come from some pretty strange sources. Case in point: a new adhesive Band-Aid inspired by Pomphorhynchus laevis, a spiny-headed worm that lives in the intestines of fish. The parasitic worm pokes its tiny, spiny, cactus shaped head through the intestinal lining and then inflates its head with fluid to stay anchored.

Using the same principle, the team at the Boston-based Brigham and Women’s Hospital created an adhesive patch with needles that swell up when they get wet, interlocking with the tissue. When this sticky patch is applied to anchor skin grafts that have just been placed over an area of injury or burn, it is three times stronger than surgical staples—and it causes less damage to soft tissues. Because it penetrates about one fourth the depth of staples, it should also be less painful to remove.


Previous Page