Skip to main content


Using R2D2 to Understand RNA Folding

Posted on by

If you love learning more about biology at a fundamental level, I have a great video for you! It simulates the 3D folding of RNA. RNA is a single stranded molecule, but it is still capable of forming internal loops that can be stabilized by base pairing, just like its famously double-stranded parent, DNA. Understanding more about RNA folding may be valuable in many different areas of biomedical research, including developing ways to help people with RNA-related diseases, such as certain cancers and neuromuscular disorders, and designing better mRNA vaccines against infectious disease threats (like COVID-19).

Because RNA folding starts even while an RNA is still being made in the cell, the process has proven hugely challenging to follow closely. An innovative solution, shown in this video, comes from the labs of NIH grantees Julius Lucks, Northwestern University, Evanston, IL, and Alan Chen, State University of New York at Albany. The team, led by graduate student Angela Yu and including several diehard Star Wars fans, realized that to visualize RNA folding they needed a technology platform that, like a Star Wars droid, is able to “see” things that others can’t. So, they created R2D2, which is short for Reconstructing RNA Dynamics from Data.

What’s so groundbreaking about the R2D2 approach, which was published recently in Molecular Cell, is that it combines experimental data on RNA folding at the nucleotide level with predictive algorithms at the atomic level to simulate RNA folding in ultra-slow motion [1]. While other computer simulations have been available for decades, they have lacked much-needed experimental data of this complex folding process to confirm their mathematical modeling.

As a gene is transcribed into RNA one building block, or nucleotide, at a time, the elongating RNA strand folds immediately before the whole molecule is fully assembled. But such folding can create a problem: the new strand can tie itself up into a knot-like structure that’s incompatible with the shape it needs to function in a cell.

To slip this knot, the cell has evolved immediate corrective pathways, or countermoves. In this R2D2 video, you can see one countermove called a toehold-mediated strand displacement. In this example, the maneuver is performed by an ancient molecule called a single recognition particle (SRP) RNA. Though SRP RNAs are found in all forms of life, this one comes from the bacterium Escherichia coli and is made up of 114 nucleotides.

The colors in this video highlight different domains of the RNA molecule, all at different stages in the folding process. Some (orange, turquoise) have already folded properly, while another domain (dark purple) is temporarily knotted. For this knotted domain to slip its knot, about 5 seconds into the video, another newly forming region (fuchsia) wiggles down to gain a “toehold.” About 9 seconds in, the temporarily knotted domain untangles and unwinds, and, finally, at about 23 seconds, the strand starts to get reconfigured into the shape it needs to do its job in the cell.

Why would evolution favor such a seemingly inefficient folding process? Well, it might not be inefficient as it first appears. In fact, as Chen noted, some nanotechnologists previously invented toehold displacement as a design principle for generating synthetic DNA and RNA circuits. Little did they know that nature may have scooped them many millennia ago!


[1] Computationally reconstructing cotranscriptional RNA folding from experimental data reveals rearrangement of non-naïve folding intermediates. Yu AM, Gasper PM Cheng L, Chen AA, Lucks JB, et. al. Molecular Cell 8, 1-14. 18 February 2021.


Ribonucleic Acid (RNA) (National Human Genome Research Institute/NIH)

Chen Lab (State University of New York at Albany)

Lucks Laboratory (Northwestern University, Evanston IL)

NIH Support: National Institute of General Medical Sciences; Common Fund

Gene-Editing Advance Puts More Gene-Based Cures Within Reach

Posted on by

Prime Editing
Caption: The prime editing system (left) contains three parts: two enzymes, Cas9 and reverse transcriptase, and an engineered guide RNA, pegRNA. Unlike regular CRISPR gene editing, prime editing nicks just one strand of the DNA molecule (right) and then uses RNA and reverse transcriptase to direct highly targeted changes to a cell’s DNA. Credit: Broad Institute of MIT and Harvard, Cambridge, MA.

There’s been tremendous excitement recently about the potential of CRISPR and related gene-editing technologies for treating or even curing sickle cell disease (SCD), muscular dystrophy, HIV, and a wide range of other devastating conditions. Now comes word of another remarkable advance—called “prime editing”—that may bring us even closer to reaching that goal.

As groundbreaking as CRISPR/Cas9 has been for editing specific genes, the system has its limitations. The initial version is best suited for making a double-stranded break in DNA, followed by error-prone repair. The outcome is generally to knock out the target. That’s great if eliminating the target is the desired goal. But what if the goal is to fix a mutation by editing it back to the normal sequence?

The new prime editing system, which was described recently by NIH-funded researchers in the journal Nature, is revolutionary because it offers much greater control for making a wide range of precisely targeted edits to the DNA code, which consists of the four “letters” (actually chemical bases) A, C, G, and T [1].

Already, in tests involving human cells grown in the lab, the researchers have used prime editing to correct genetic mutations that cause two inherited diseases: SCD, a painful, life-threatening blood disorder, and Tay-Sachs disease, a fatal neurological disorder. What’s more, they say the versatility of their new gene-editing system means it can, in principle, correct about 89 percent of the more than 75,000 known genetic variants associated with human diseases.

In standard CRISPR, a scissor-like enzyme called Cas9 is used to cut all the way through both strands of the DNA molecule’s double helix. That usually results in the cell’s DNA repair apparatus inserting or deleting DNA letters at the site. As a result, CRISPR is extremely useful for disrupting genes and inserting or removing large DNA segments. However, it is difficult to use this system to make more subtle corrections to DNA, such as swapping a letter T for an A.

To expand the gene-editing toolbox, a research team led by David R. Liu, Broad Institute of MIT and Harvard, Cambridge, MA, previously developed a class of editing agents called base editors [2,3]. Instead of cutting DNA, base editors directly convert one DNA letter to another. However, base editing has limitations, too. It works well for correcting four of the most common single letter mutations in DNA. But at least so far, base editors haven’t been able to make eight other single letter changes, or fix extra or missing DNA letters.

In contrast, the new prime editing system can precisely and efficiently swap any single letter of DNA for any other, and can make both deletions and insertions, at least up to a certain size. The system consists of a modified version of the Cas9 enzyme fused with another enzyme, called reverse transcriptase, and a specially engineered guide RNA, called pegRNA. The latter contains the desired gene edit and steers the needed editing apparatus to a specific site in a cell’s DNA.

Once at the site, the Cas9 nicks one strand of the double helix. Then, reverse transcriptase uses one DNA strand to “prime,” or initiate, the letter-by-letter transfer of new genetic information encoded in the pegRNA into the nicked spot, much like the search-and-replace function of word processing software. The process is then wrapped up when the prime editing system prompts the cell to remake the other DNA strand to match the new genetic information.

So far, in tests involving human cells grown in a lab dish, Liu and his colleagues have used prime editing to correct the most common mutation that causes SCD, converting a T to an A. They were also able to remove four DNA letters to correct the most common mutation underlying Tay-Sachs disease, a devastating condition that typically produces symptoms in children within the first year and leads to death by age four. The researchers also used their new system to insert new DNA segments up to 44 letters long and to remove segments at least 80 letters long.

Prime editing does have certain limitations. For example, 11 percent of known disease-causing variants result from changes in the number of gene copies, and it’s unclear if prime editing can insert or remove DNA that’s the size of full-length genes—which may contain up to 2.4 million letters.

It’s also worth noting that now-standard CRISPR editing and base editors have been tested far more thoroughly than prime editing in many different kinds of cells and animal models. These earlier editing technologies also may be more efficient for some purposes, so they will likely continue to play unique and useful roles in biomedicine.

As for prime editing, additional research is needed before we can consider launching human clinical trials. Among the areas that must be explored are this technology’s safety and efficacy in a wide range of cell types, and its potential for precisely and safely editing genes in targeted tissues within living animals and people.

Meanwhile, building on all these bold advances, efforts are already underway to accelerate the development of affordable, accessible gene-based cures for SCD and HIV on a global scale. Just last month, NIH and the Bill & Melinda Gates Foundation announced a collaboration that will invest at least $200 million over the next four years toward this goal. Last week, I had the chance to present this plan and discuss it with global health experts at the Grand Challenges meeting Addis Ababa, Ethiopia. The project is an unprecedented partnership designed to meet an unprecedented opportunity to address health conditions that once seemed out of reach but—as this new work helps to show—may now be within our grasp.


[1] Search-and-replace genome editing without double-strand breaks or donor DNA. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR. Nature. Online 2019 October 21. [Epub ahead of print]

[2] Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Nature. 2016 May 19;533(7603):420-424.

[3] Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR. Nature. 2017 Nov 23;551(7681):464-471.


Tay-Sachs Disease (Genetics Home Reference/National Library of Medicine/NIH)

Sickle Cell Disease (National Heart, Lung, and Blood Institute/NIH)

Cure Sickle Cell Initiative (NHLBI)

What are Genome Editing and CRISPR-Cas9? (National Library of Medicine/NIH)

Somatic Cell Genome Editing Program (Common Fund/NIH)

David R. Liu (Harvard, Cambridge, MA)

NIH Support: National Institute of Allergy and Infectious Diseases; National Human Genome Research Institute; National Institute for General Medical Sciences; National Institute of Biomedical Imaging and Bioengineering; National Center for Advancing Translational Sciences

Adding Letters to the DNA Alphabet

Posted on by

semi-synthetic bacterium

Credit: William B. Kiosses

The recipes for life, going back billions of years to the earliest single-celled organisms, are encoded in a DNA alphabet of just four letters. But is four as high as the DNA code can go? Or, as researchers have long wondered, is it chemically and biologically possible to expand the DNA code by a couple of letters?

A team of NIH-funded researchers is now answering these provocative questions. The researchers recently engineered a semi-synthetic bacterium containing DNA with six letters, including two extra nucleotides [1, 2]. Now, in a report published in Nature, they’ve taken the next critical step [3]. They show that bacteria, like those in the photo, are not only capable of reliably passing on to the next generation a DNA code of six letters, they can use that expanded genetic information to produce novel proteins unlike any found in nature.