Skip to main content

neurotransmitter

Mood-Altering Messenger Goes Nuclear

Posted on by

Serotonin

Serotonin is best known for its role as a chemical messenger in the brain, helping to regulate mood, appetite, sleep, and many other functions. It exerts these influences by binding to its receptor on the surface of neural cells. But startling new work suggests the impact of serotonin does not end there: the molecule also can enter a cell’s nucleus and directly switch on genes.

While much more study is needed, this is a potentially groundbreaking discovery. Not only could it have implications for managing depression and other mood disorders, it may also open new avenues for treating substance abuse and neurodegenerative diseases.

To understand how serotonin contributes to switching genes on and off, a lesson on epigenetics is helpful. Keep in mind that the DNA instruction book of all cells is essentially the same, yet the chapters of the book are read in very different ways by cells in different parts of the body. Epigenetics refers to chemical marks on DNA itself or on the protein “spools” called histones that package DNA. These marks influence the activity of genes in a particular cell without changing the underlying DNA sequence, switching them on and off or acting as “volume knobs” to turn the activity of particular genes up or down.

The marks include various chemical groups—including acetyl, phosphate, or methyl—which are added at precise locations to those spool-like proteins called histones. The addition of such groups alters the accessibility of the DNA for copying into messenger RNA and producing needed proteins.

In the study reported in Nature, researchers led by Ian Maze and postdoctoral researcher Lorna Farrelly, Icahn School of Medicine at Mount Sinai, New York, followed a hunch that serotonin molecules might also get added to histones [1]. There had been hints that it might be possible. For instance, earlier evidence suggested that inside cells, serotonin could enter the nucleus. There also was evidence that serotonin could attach to proteins outside the nucleus in a process called serotonylation.

These data begged the question: Is serotonylation important in the brain and/or other living tissues that produce serotonin in vivo? After a lot of hard work, the answer now appears to be yes.

These NIH-supported researchers found that serotonylation does indeed occur in the cell nucleus. They also identified a particular enzyme that directly attaches serotonin molecules to histone proteins. With serotonin attached, DNA loosens on its spool, allowing for increased gene expression.

The team found that histone serotonylation takes place in serotonin-producing human neurons derived from induced pluripotent stem cells (iPSCs). They also observed this process occurring in the brains of developing mice.

In fact, the researchers found evidence of those serotonin marks in many parts of the body. They are especially prevalent in the brain and gut, where serotonin also is produced in significant amounts. Those marks consistently correlate with areas of active gene expression.

The serotonin mark often occurs on histones in combination with a second methyl mark. The researchers suggest that this double marking of histones might help to further reinforce an active state of gene expression.

This work demonstrates that serotonin can directly influence gene expression in a manner that’s wholly separate from its previously known role in transmitting chemical messages from one neuron to the next. And, there are likely other surprises in store.

The newly discovered role of serotonin in modifying gene expression may contribute significantly to our understanding of mood disorders and other psychiatric conditions with known links to serotonin signals, suggesting potentially new targets for therapeutic intervention. But for now, this fundamental discovery raises many more intriguing questions than it answers.

Science is full of surprises, and this paper is definitely one of them. Will this kind of histone marking occur with other chemical messengers, such as dopamine and acetylcholine? This unexpected discovery now allows us to track serotonin and perhaps some of the brain’s other chemical messengers to see what they might be doing in the cell nucleus and whether this information might one day help in treating the millions of Americans with mood and behavioral disorders.

Reference:

[1] Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Farrelly LA, Thompson RE, Zhao S, Lepack AE, Lyu Y, Bhanu NV, Zhang B, Loh YE, Ramakrishnan A, Vadodaria KC, Heard KJ, Erikson G, Nakadai T, Bastle RM, Lukasak BJ, Zebroski H 3rd, Alenina N, Bader M, Berton O, Roeder RG, Molina H, Gage FH, Shen L, Garcia BA, Li H, Muir TW, Maze I. Nature. 2019 Mar 13. [Epub ahead of print]

Links:

Any Mood Disorder (National Institute of Mental Health/NIH)

Drugs, Brains, and Behavior: The Science of Addiction (National Institute on Drug Abuse/NIH)

Epigenomics (National Human Genome Research Institute/NIH)

Maze Lab (Icahn School of Medicine at Mount Sinai, New York, NY)

NIH Support: National Institute on Drug Abuse; National Institute of Mental Health; National Institute of General Medical Sciences; National Cancer Institute


Measuring Brain Chemistry

Posted on by

Anne Andrews
Anne Andrews
Credit: From the American Chemical Society’s “Personal Stories of Discovery”

Serotonin is one of the chemical messengers that nerve cells in the brain use to communicate. Modifying serotonin levels is one way that antidepressant and anti-anxiety medications are thought to work and help people feel better. But the precise nature of serotonin’s role in the brain is largely unknown.

That’s why Anne Andrews set out in the mid-1990s as a fellow at NIH’s National Institute of Mental Health to explore changes in serotonin levels in the brains of anxious mice. But she quickly realized it wasn’t possible. The tools available for measuring serotonin—and most other neurochemicals in the brain—couldn’t offer the needed precision to conduct her studies.

Instead of giving up, Andrews did something about it. In the late 1990s, she began formulating an idea for a neural probe to make direct and precise measurements of brain chemistry. Her progress was initially slow, partly because the probe she envisioned was technologically ahead of its time. Now at the University of California, Los Angeles (UCLA) more than 15 years later, she’s nearly there. Buoyed by recent scientific breakthroughs, the right team to get the job done, and the support of a 2017 NIH Director’s Transformative Research Award, Andrews expects to have the first fully functional devices ready within the next two years.


Finding Brain Circuits Tied to Alertness

Posted on by

Everybody knows that it’s important to stay alert behind the wheel or while out walking on the bike path. But our ability to react appropriately to sudden dangers is influenced by whether we feel momentarily tired, distracted, or anxious. How is it that the brain can transition through such different states of consciousness while performing the same routine task, even as its basic structure and internal wiring remain unchanged?

A team of NIH-funded researchers may have found an important clue in zebrafish, a popular organism for studying how the brain works. Using a powerful new method that allowed them to find and track brain circuits tied to alertness, the researchers discovered that this mental state doesn’t work like an on/off switch. Rather, alertness involves several distinct brain circuits working together to bring the brain to attention. As shown in the video above that was taken at cellular resolution, different types of neurons (green) secrete different kinds of chemical messengers across the zebrafish brain to affect the transition to alertness. The messengers shown are: serotonin (red), acetylcholine (blue-green), and dopamine and norepinephrine (yellow).

What’s also fascinating is the researchers found that many of the same neuronal cell types and brain circuits are essential to alertness in zebrafish and mice, despite the two organisms being only distantly related. That suggests these circuits are conserved through evolution as an early fight-or-flight survival behavior essential to life, and they are therefore likely to be important for controlling alertness in people too. If correct, it would tell us where to look in the brain to learn about alertness not only while doing routine stuff but possibly for understanding dysfunctional brain states, ranging from depression to post-traumatic stress disorder (PTSD).


Cool Videos: Reconstructing the Cerebral Cortex

Posted on by

Click for video
This colorful cylinder could pass for some sort of modern art sculpture, but it actually represents a sneak peak at some of the remarkable science that we can look forward to seeing from the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. In a recent study in the journal Cell [1], NIH grantee Jeff Lichtman of Harvard University, Cambridge, MA and his colleagues unveiled the first digitized reconstruction of tissue from the mammalian cerebral cortex—the outermost part of the brain, responsible for complex behaviors.

Specifically, Lichtman’s group mapped in exquisite detail a very small cube of a mouse’s cerebral cortex. In fact, the cube is so tiny (smaller than a grain of sand!) that it contained no whole cells, just a profoundly complex tangle of finger-like nerve cell extensions called axons and dendrites. And what you see in this video is just one cylindrical portion of that tissue sample, in which Licthtman and colleagues went full force to identify and label every single cellular and intracellular element. The message-sending axons are delineated in an array of pastel colors, while more vivid hues of red, green, and purple mark the message-receiving dendrites and bright yellow indicates the nerve-insulating glia. In total, the cylinder contains parts of about 600 axons, 40 different dendrites, and 500 synapses, where nerve impulses are transmitted between cells.


Who Knew? A Neural Circuit Just for Itching

Posted on by

Itch line (red) with touch, pain, and temperature lines (white) going through DRG before going to the spinal cord.

Itch-inducing agents activate a discrete population of peripheral sensory neurons that produce a signaling molecule called natriuretic polypeptide b (Nppb). The release of Nppb from these primary pruriceptive neurons triggers a dedicated itch biocircuit to generate the sensation of itch. [Images courtesy of Mark Hoon, National Institute of Dental and Craniofacial Research, NIH]

The occasional itch—be it a bug bite or rash—is annoying. But there are millions of people with chronic itching conditions, like eczema and psoriasis, who are constantly scratching their skin. This is more than a little irritation—it drastically reduces their quality of life and is a perpetual distraction. Current anti-itch treatments include topical corticosteroid creams, oral antihistamines, and various lotions. But researchers at NIH have gone beyond the skin’s surface and discovered a critical molecule at the root of that itchy feeling [1].


Next Page