Skip to main content


Creative Minds: Meet a Theoretical Neuroscientist

Posted on by

Sean Escola

Sean Escola

Most neuroscientists make their discoveries in a traditional laboratory or clinical setting. Sean Escola, a theoretical neuroscientist at Columbia University in New York, just needs a powerful computer and, judging from his photo, a good whiteboard.

Using data that he and his colleagues have recorded from living brain cells, called neurons, Escola crunches numbers to develop rigorous statistical models that simulate the activity of neuronal circuits within the brain. He hopes his models will help to build a new neuroscience that brings into sharper focus how the brain’s biocircuitry lights up to generate sensations and thoughts—and how it misfires in various neurological disorders, particularly in mental illnesses.

The Symphony Inside Your Brain

Posted on by

Ever wonder what is it that makes you, you? Depending on whom you ask, there are a lot of different answers, but these days some of the world’s top neuroscientists might say: “You are your connectome.”

Grid of major pathways in human brain’s left hemisphere. Using diffusion spectrum imaging, which tracks movement of water through nerve fibers, researchers can trace groups of neurons as they cross from one region of the brain to another in living individuals. Credit: Van Wedeen, Massachusetts General/Harvard Medical School

The connectome refers to the exquisitely interconnected network of neurons (nerve cells) in your brain. Like the genome, the microbiome, and other exciting “ome” fields, the effort to map the connectome and decipher the electrical signals that zap through it to generate your thoughts, feelings, and behaviors has become possible through development of powerful new tools and technologies.

For some time, neuroscientists have been able to infer loosely the main functions of certain brain regions by studying patients with head injuries, brain tumors, and neurological diseases—or by measuring levels of oxygen or glucose consumption in healthy people’s brains during particular activities. But all along it’s been rather clear that these inferences were overly simplistic.  Now, new advances in computer science, math, and imaging and data visualization are empowering us to study the human brain as an entire organ, and at a level of detail not previously imagined possible in a living person.