Skip to main content

National Institutes of Health

Basic Science Finds New Clue to Bipolar Disorder

Posted on by

Greek comedy tragedy play masks -- altered with ATCGs to create the shadows and double helix to create the ties.We know that heredity, along with environment, plays an important role in many mental illnesses. For example, studies have revealed that if one identical twin has bipolar disorder, the chance of the other being affected is about 60%. There are similar observations for autism, schizophrenia, and major depression. But finding the genes that predispose to these conditions has proven very tricky.

Now, an NIH-funded team at Baylor College of Medicine has demonstrated for the first time that extra copies of a gene that codes for a protein called Shank3 can cause manic episodes similar to those seen in some types of bipolar disorder [1]. The researchers initially tested their hypothesis in mice and then, building upon those findings, went on to find extra copies of the SHANK3 gene in two human patients—one with seizures and attention deficit hyperactivity disorder and another with seizures and bipolar disorder.


Snapshots of Life: Sore Throat as Art

Posted on by

Scanning electron micrograph of Strep A bacteria

Credit: Vincent A. Fischetti, The Rockefeller University

Most parents and kids wouldn’t consider strep throat the subject of high art. But the judges of the Federation of American Societies for Experimental Biology’s 2013 BioArt competition think it is. In this silver-toned scanning electron micrograph, you can see hundreds of tiny spheres—bacteria called Group A streptococci—attached to a human pharyngeal (throat) cells grown in a lab dish. These bacteria are responsible for a very nasty type of pharyngeal inflammation commonly known as strep throat. Strep infections are usually treated with antibiotics; left untreated, they can lead to rheumatic fever, rheumatic heart disease, and even kidney disease.


Different Cancers Can Share Genetic Signatures

Posted on by

Cancer types floating over a cell with unraveling DNA

NIH-funded researchers analyzed the DNA of these cancers.

Cancer is a disease of the genome. It arises when genes involved in promoting or suppressing cell growth sustain mutations that disturb the normal stop and go signals.  There are more than 100 different types of cancer, most of which derive their names and current treatment based on their tissue of origin—breast, colon, or brain, for example. But because of advances in DNA sequencing and analysis, that soon may be about to change.

Using data generated through The Cancer Genome Atlas, NIH-funded researchers recently compared the genomic fingerprints of tumor samples from nearly 3,300 patients with 12 types of cancer: acute myeloid leukemia, bladder, brain (glioblastoma multiforme), breast, colon, endometrial, head and neck, kidney, lung (adenocarcinoma and squamous cell carcinoma), ovarian, and rectal. Confirming but greatly extending what smaller studies have shown, the researchers discovered that even when cancers originate from vastly different tissues, they can show similar features at the DNA level


Driving Innovation and Creativity with High Risk Research

Posted on by

Girl in a lab

Caption: One of the many faces of NIH-supported innovation, Stanford’s Christina Smolke is exploring how synthetic biology and microbes can be used to produce new drugs. She is a 2012 Pioneer Award winner.
Credit: Linda Cicero/Stanford News Service

High-risk research isn’t for the faint of heart. It’s for fearless researchers who envision and develop innovative projects with unconventional approaches that, if successful, may yield great leaps in our understanding of health problems and/or biological mechanisms. It takes nerve and creativity to conceive such projects—and, often, special support to bring them to fruition.  And, as the name implies, there is a significant chance of failure.


Snapshots of Life: NIH’s BioArt Winners

Posted on by

Brick wall adorned with poster-sized prints of winning photos

Credit: FASEB

If you follow my blog, you know that I like to feature spectacular images that scientists have created during the course of their research. These images are rarely viewed outside the lab, but some are so worthy of artistic merit and brimming with educational value that they deserve a wider audience. That’s one reason why the Federation of American Societies for Experimental Biology (FASEB) launched its BioArt contest. Of the 12 winners in 2013, I’m proud to report that 11 received support from NIH. In fact, I’m so proud that I plan to showcase their work in an occasional series entitled “Snapshots of Life.” Continue reading to see the first installment—enjoy!


Previous Page Next Page