Skip to main content

music

Music in the Atrium

Posted on by

Music in the Atrium
On November 10, I took a break at lunchtime to pull out my guitar and play some bluegrass with the We RNA String Band. The hour-long performance was part of the NIH Clinical Center’s “Music in the Atrium” series. These frequent concerts are provided for patients, their families, and visitors to support the Clinical Center’s environment of care and healing. Jamming away, while physically distancing, are fellow bandmembers (l-r) William Sears on fiddle, Dominic Golec on mandolin, John Tisdale on bass, and Ivan Vujkovic-Cvijin on guitar. Credit: NIH

Congratulations Class of 2020

Posted on by

Staunton Graduation
Congratulations to the 200 members of the Staunton (VA) High School Class of 2020. As a proud Staunton High alumnus, class of 1966, it was my honor to offer a video commencement statement for this year’s graduates. Because of the COVID-19 pandemic, each senior had to receive his or her diploma individually over a three-day period in mid-June at a nearby stadium. Graduates could have up to five family members or guests accompany them as they received their diplomas. As part of my statement, I got out my guitar, also from Staunton, and played a version of “The Gambler” by the late-Kenny Rogers that I’d reworked to touch on COVID-19 and to thank them for their sacrifices this difficult graduation season.

A New Year’s Moment at NIH Clinical Center

Posted on by

A New Year's Moment at NIH Clinical Center
To mark the new year, I spent my lunch hour playing the piano for patients, their families, and staff in the atrium of the NIH Clinical Center on January 3, 2020. If you’d like to share in the moment, it ends with Auld Lang Syne. Photo: NIH


Exploring the Universality of Human Song

Posted on by

Analysis of Music-Internationally

It’s often said that music is a universal language. But is it really universal? Some argue that humans are just too culturally complex and their music is far too varied to expect any foundational similarity. Yet some NIH-funded researchers recently decided to take on the challenge, using the tools of computational social science to analyze recordings of human songs and other types of data gathered from more than 300 societies around the globe.

In a study published in the journal Science [1], the researchers conclude that music is indeed universal. Their analyses showed that all of the cultures studied used song in four similar behavioral contexts: dance, love, healing, and infant care. What’s more, no matter where in the world one goes, songs used in each of those ways were found to share certain musical features, including tone, pitch, and rhythm.

As exciting as the new findings may be for those who love music (like me), the implications may extend far beyond music itself. The work may help to shed new light on the complexities of the human brain, as well as inform efforts to enhance the role of music in improving human health. The healing power of music is a major focus of the NIH-supported Sound Health Initiative.

Samuel Mehr, a researcher at Harvard University, Cambridge, MA, led this latest study, funded in part by an NIH Director’s Early Independence Award. His multi-disciplinary team included anthropologists Manvir Singh, Harvard, and Luke Glowacki, Penn State University, State College; computational linguist Timothy O’Donnell, McGill University, Montreal, Canada; and political scientists Dean Knox, Princeton University, Princeton, NJ, and Christopher Lucas, Washington University, St. Louis.

In work published last year [2], Mehr’s team found that untrained listeners in 60 countries could on average discern the human behavior associated with culturally unfamiliar musical forms. These behaviors included dancing, soothing a baby, seeking to heal illness, or expressing love to another person.

In the latest study, the team took these initial insights and applied them more broadly to the universality of music. They started with the basic question: Do all human societies make music?

To find the answer, the team accessed Yale University’s Human Relations Area Files, an internationally recognized database for cultural anthropologists. This rich resource contains high-quality data for 319 mostly tribal societies across the planet, allowing the researchers to search archival information for mentions of music. Their search pulled up music tags for 309 societies. Digging deeper in other historical records not in the database, the team confirmed that the remaining six societies did indeed make music.

The researchers propose that these 319 societies provide a representative cross section of humanity. They thus conclude that it is statistically probable that music is in fact found in all human societies.

What exactly is so universal about music? To begin answering this complex question, the researchers tapped into more than a century of musicology to build a vast, multi-faceted database that they call the Natural History of Song (NHS).

Drawing from the NHS database, the researchers focused on nearly 5,000 vocally performed songs from 60 carefully selected human societies on all continents. By statistically analyzing those musical descriptions, they found that the behaviors associated with songs vary along three dimensions, which the researchers refer to as formality, arousal, and religiosity.

When the researchers mapped the four types of songs from their earlier study—love, dance, lullaby, and healing—onto these dimensions, they found that songs used in similar behavioral contexts around the world clustered together. For instance, across human societies, dance songs tend to appear in more formal contexts with large numbers of people. They also tend to be upbeat and energetic and don’t usually appear as part of religious ceremonies. In contrast, love songs tend to be more informal and less energetic.

Interestingly, the team also replicated its previous study in a citizen-science experiment with nearly 30,000 participants living in over 100 countries worldwide. They found again that listeners could tell what kinds of songs they were listening to, even when those songs came from faraway places. They went on to show that certain acoustic features of songs, like tempo, melody, and pitch, help to predict a song’s primary behavioral function across societies.

In many musical styles, melodies are composed of a fixed set of distinct tones organized around a tonal center (sometimes called the “tonic,” it’s the “do” in “do-re-mi”). For instance, the researchers explain, the tonal center of “Row Your Boat” is found in each “row” as well as the last “merrily,” and the final “dream.”

Their analyses show that songs with such basic tonal melodies are widespread and perhaps even universal. This suggests that tonality could be a means to delve even deeper into the natural history of world music and other associated behaviors, such as play, mourning, and fighting.

While some aspects of music may be universal, others are quite diverse. That’s particularly true within societies, where people may express different psychological states in song to capture their views of their culture. In fact, Mehr’s team found that the musical variation within a typical society is six times greater for that reason than the musical diversity across societies.

Following up on this work, Mehr’s team is now recruiting families with young infants for a study to understand how they respond to their varied collection of songs. Meanwhile, through the Sound Health Initiative, other research teams around the country are exploring many other ways in which listening to and creating music may influence and improve our health. As a scientist and amateur musician, I couldn’t be more excited to take part in this exceptional time of discovery at the intersection of health, neuroscience, and music.

References:

[1] Universality and diversity in human song. Mehr SA, Singh M, Knox D, Ketter DM, Pickens-Jones D, Atwood S, Lucas C, Jacoby N, Egner AA, Hopkins EJ, Howard RM, Hartshorne JK, Jennings MV, Simson J, Bainbridge CM, Pinker S, O’Donnell TJ, Krasnow MM, Glowacki L. Science. 2019 Nov 22;366(6468).

[2] Form and function in human song. Mehr SA, Singh M, York H, Glowacki L, Krasnow MM. Curr Biol. 2018 Feb 5;28(3):356-368.e5.

Links:

Sound Health Initiative (NIH)

Video: Music and the Mind—A Q & A with Renée Fleming & Francis Collins (YouTube)

The Music Lab (Harvard University, Cambridge, MA)

Samuel Mehr (Harvard)

NIH Director’s Early Independence Award (Common Fund)

NIH Support: Common Fund


Performing at IDWeek 2019

Posted on by

During the opening reception for IDWeek 2019, I performed with my band the Affordable Rock ‘n’ Roll Act (ARRA). We were joined onstage by Pardis Sabeti (second from left), a computational geneticist at the Broad Institute of MIT and Harvard, Cambridge, and a talented rock ‘n’ roll singer. Here we perform Pardis’ song “Breathe In (Turkana Boy).” IDWeek is the joint annual meeting of the Infectious Diseases Society of America (IDSA), Society for Healthcare Epidemiology of America (SHEA), the HIV Medical Association (HIVMA), and the Pediatric Infectious Diseases Society (PIDS). The reception took place on October 2, 2019 at the Washington, D. C. Convention Center. Credit: Dawd Siraj, University of Wisconsin-Madison

Next Page