Skip to main content

Moderna

Accepting the COVID-19 Vaccine

Posted on by

Francis Collins Vaccination
I was thrilled to roll up my sleeve and get the Moderna COVID-19 vaccine today at the NIH Clinical Center. As NIH Director, I’ve followed closely the development of these first vaccines, and I know they have been rigorously tested and found to be safe and effective. I encourage everyone to accept the vaccines when offered to you. It’s our best chance to turn the tide on the pandemic. Also receiving the vaccine today were Health and Human Services Secretary Alex Azar, Anthony Fauci, Director of NIH’s National Institute of Allergy and Infectious Diseases; Colleen McGowan, Director of NIH’s Office of Research Services; and six frontline healthcare workers at the NIH Clinical Center. Credit: NIH

Celebrating the Gift of COVID-19 Vaccines

Posted on by

COVID-19 - Gift of the Vaccines
Credit: NIH

The winter holidays are traditionally a time of gift-giving. As fatiguing as 2020 and the COVID-19 pandemic have been, science has stepped up this year to provide humankind with a pair of truly hopeful gifts: the first two COVID-19 vaccines.

Two weeks ago, the U.S. Food and Drug Administration (FDA) granted emergency use authorization (EUA) to a COVID-19 vaccine from Pfizer/BioNTech, enabling distribution to begin to certain high-risk groups just three days later. More recently, the FDA granted an EUA to a COVID-19 vaccine from the biotechnology company Moderna, Cambridge, MA. This messenger RNA (mRNA) vaccine, which is part of a new approach to vaccination, was co-developed by NIH’s National Institute of Allergy and Infectious Diseases (NIAID). The EUA is based on data showing the vaccine is safe and 94.5 percent effective at protecting people from infection with SARS-CoV-2, the coronavirus that causes COVID-19.

Those data on the Moderna vaccine come from a clinical trial of 30,000 individuals, who generously participated to help others. We can’t thank those trial participants enough for this gift. The distribution of millions of Moderna vaccine doses is expected to begin this week.

It’s hard to put into words just how remarkable these accomplishments are in the history of science. A vaccine development process that used to take many years, often decades, has been condensed to about 11 months. Just last January, researchers started out with a previously unknown virus and we now have not just one, but two, vaccines that will be administered to millions of Americans before year’s end. And the accomplishments don’t end there—several other types of COVID-19 vaccines are also on the way.

It’s important to recognize that this couldn’t have happened without the efforts of many scientists working tirelessly behind the scenes for many years prior to the pandemic. Among those who deserve tremendous credit are Kizzmekia Corbett, Barney Graham, John Mascola, and other members of the amazing team at the Dale and Betty Bumpers Vaccine Research Center at NIH’s National Institute of Allergy and Infectious Diseases (NIAID).

When word of SARS-CoV-2 emerged, Corbett, Graham, and other NIAID researchers had already been studying other coronaviruses for years, including those responsible for earlier outbreaks of respiratory disease. So, when word came that this was a new coronavirus outbreak, they were ready to take action. It helped that they had paid special attention to the spike proteins on the surface of coronaviruses, which have turned out to be the main focus the COVID-19 vaccines now under development.

The two vaccines currently authorized for administration in the United States work in a unique way. Their centerpiece is a small, non-infectious snippet of mRNA. Our cells constantly produce thousands of mRNAs, which provide the instructions needed to make proteins. When someone receives an mRNA vaccine for COVID-19, it tells the person’s own cells to make the SARS-CoV-2 spike protein. The person’s immune system then recognizes the viral spike protein as foreign and produces antibodies to eliminate it.

This vaccine-spurred encounter trains the human immune system to remember the spike protein. So, if an actual SARS-CoV-2 virus tries to infect a vaccinated person weeks or months later, his or her immune system will be ready to fend it off. To produce the most vigorous and durable immunity against the virus, people will need to get two shots of mRNA vaccine, which are spaced several weeks to a month apart, depending on the vaccine.

Some have raised concerns on social media that mRNA vaccines might alter the DNA genome of someone being vaccinated. But that’s not possible, since this mRNA doesn’t enter the nucleus of the cell where DNA is located. Instead, the vaccine mRNAs stay in the outer part of the cell (the cytoplasm). What’s more, after being transcribed into protein just one time, the mRNA quickly degrades. Others have expressed concerns about whether the vaccine could cause COVID-19. That is not a risk because there’s no whole virus involved, just the coding instructions for the non-infectious spike protein.

An important advantage of mRNA is that it’s easy for researchers to synthesize once they know the nucleic acid sequence of a target viral protein. So, the gift of mRNA vaccines is one that will surely keep on giving. This new technology can now be used to speed the development of future vaccines. After the emergence of the disease-causing SARS, MERS, and now SARS-CoV-2 viruses, it would not be surprising if there are other coronavirus health threats in our future. Corbett and her colleagues are hoping to design a universal vaccine that can battle all of them. In addition, mRNA vaccines may prove effective for fighting future pandemics caused by other infectious agents and for preventing many other conditions, such as cancer and HIV.

Though vaccines are unquestionably our best hope for getting past the COVID-19 pandemic, public surveys indicate that some people are uneasy about accepting this disease-preventing gift. Some have even indicated they will refuse to take the vaccine. Healthy skepticism is a good thing, but decisions like this ought to be based on weighing the evidence of benefit versus risk. The results of the Pfizer and Moderna trials, all released for complete public scrutiny, indicate the potential benefits are high and the risks, low. Despite the impressive speed at which the new COVID-19 vaccines were developed, they have undergone and continue to undergo a rigorous process to generate all the data needed by the FDA to determine their long-term safety and effectiveness.

Unfortunately, the gift of COVID-19 vaccines comes too late for the more than 313,000 Americans who have died from complications of COVID-19, and many others who’ve had their lives disrupted and may have to contend with long-term health consequences related to COVID-19. The vaccines did arrive in record time, but all of us wish they could somehow have arrived even sooner to avert such widespread suffering and heartbreak.

It will be many months before all Americans who are willing to get a vaccine can be immunized. We need 75-80 percent of Americans to receive vaccines in order to attain the so-called “herd immunity” needed to drive SARS-CoV-2 away and allow us all to get back to a semblance of normal life.

Meanwhile, we all have a responsibility to do everything possible to block the ongoing transmission of this dangerous virus. Each of us needs to follow the three W’s: Wear a mask, Watch your distance, Wash your hands often.

When your chance for immunization comes, please roll up your sleeve and accept the potentially life-saving gift of a COVID-19 vaccine. In fact, I just got my first shot of the Moderna vaccine today along with NIAID Director Anthony Fauci, HHS Secretary Alex Azar, and some front-line healthcare workers at the NIH Clinical Center. Accepting this gift is our best chance to put this pandemic behind us, as we look forward to a better new year.

Links:

Coronavirus (COVID-19) (NIH)

Combat COVID (U.S. Department of Health and Human Services, Washington, D.C.)

Dale and Betty Bumpers Vaccine Research Center (National Institute of Allergy and Infectious Diseases/NIH)

Moderna (Cambridge, MA)

Pfizer (New York, NY)

BioNTech (Mainz, Germany)


Reasons for Gratitude Amid the COVID-19 Pandemic

Posted on by

Thanksgiving Tribute
Credit: Getty Images

For many of us, Thanksgiving will feel really different this year. Less will need to be more, as we celebrate alone or with our immediate household members to stay safe and help combat the surge in COVID-19 cases across most of the land. And yet, times of trouble can also help us to focus on what’s really important in our lives. So, even as we face these challenges and the range of emotions that arise with them, it’s worth remembering that this Thanksgiving, there remain many reasons to be grateful.

I’m certainly grateful for a loving family and friends that provide depth and meaning to life, even though most of us can’t be physically together and hug each other right now. My faith is also a source of comfort and reassurance at this time. I also feel a deep sense of gratitude for everyone who has sacrificed for the common good over the last several months, especially those who’ve masked up and physically distanced to provide essential services in our communities to keep everything going. You will no doubt have your own list of heroes, but here are just a few of mine:

Healthcare workers, thanks for all you do under such difficult and dangerous conditions.
Essential workers, thanks for clocking in every day. That includes bus drivers, grocery store cashiers, waste collectors, tradespeople, firefighters, law enforcement officers, and all those who deliver packages to my door.
Teachers, working remotely or in person. Thanks for your commitment to our students and continuing to bring out the best in them.
Parents, including so many now working with kids at home. Thanks for juggling responsibilities and making everything work.
Clinical trials participants. Your participation is critical for developing treatments and vaccines. Thanks to you all, including the fine examples of many public figures, including the trial participation of Senator Rob Portman and financial contribution of legendary performer Dolly Parton.
Everyone following the 3 W’s: Wear a mask, Watch your distance, and Wash your hands. Thank you for doing your part every day to keep yourself, your loved ones, and your community safe. You are our front lines in the battle.
Researchers, from both the public and private sectors, who are working in partnership all around the world. Our shared goal is to learn all we can about COVID-19 and to develop better tests, new treatments, and safe and effective vaccines.

On that note, you may have heard about the very promising interim clinical trial results of an investigational COVID-19 vaccine known as mRNA-1273, co-developed by the biotechnology company Moderna, Cambridge, MA, and NIH’s National Institute of Allergy and Infectious Diseases. That mRNA vaccine was found to be 94.5 percent effective in preventing symptomatic COVID-19. Another mRNA vaccine, developed by Pfizer and BioNTech, also recently was shown to be 95 percent effective and has now submitted an application for emergency use authorization (EUA) to the Food and Drug Administration (FDA). In addition, AstraZeneca announced that, in a late-stage clinical trial, the vaccine it developed in partnership with the University of Oxford reduced the risk of COVID-19 infection by an average of 70 percent, with up to 90 percent efficacy in one dosing regimen.

Other promising vaccine candidates continue to work their way through clinical trials, and we’ll no doubt be hearing more about those soon. It is truly remarkable to accomplish in 10 months what normally takes about 8 years. Therapeutic progress is also moving forward rapidly, with a second monoclonal antibody treatment for high-risk outpatients receiving emergency use authorization from the FDA just a few days ago.

For all of these advances, I am immensely grateful. Of course, it will take time and continued study to get a COVID-19 vaccine fully approved and distributed to all those who need it. The success of any vaccine also will hinge on people across the country—including you and all those whom I’ve recognized here—making the choice to protect themselves and others by getting vaccinated against COVID-19.

As we look ahead to that day when the COVID-19 pandemic is under control, I encourage you to take some time to jot down your own list of reasons to be grateful. Encourage family members to do the same and take some time to share them with one another, whether it’s around the table or by email, phone, or videoconferencing. The holidays are a time for making memories and—as different as it may look—this year is no different. So, while you’re enjoying your Thanksgiving meal around a smaller table, remember that you’re doing it from a place of love and gratitude. I wish for you a safe and happy Thanksgiving.

Links:

Coronavirus (COVID) (NIH)

Your Health: Holiday Celebrations and Small Gatherings (Centers for Disease Control and Prevention, Atlanta)

Your Health: Personal and Social Activities (CDC)


COVID-19 Vaccine Appears Well-Tolerated and Effective in Developing Antibodies in Small Study of Older Adults

Posted on by

Bandage after vaccine
Credit: iStock/BackyardProduction

It’s been truly breathtaking to watch the progress being made on a daily basis to develop safe and effective vaccines for SARS-CoV-2, the novel coronavirus that causes COVID-19. Indeed, months sooner than has ever been possible for a newly emerging infection, several promising vaccines are already working their way through Phase 3 studies, the final stage of clinical evaluation. I remain optimistic that we will have one or more vaccines that prove to be safe and effective by January 2021.

But, as encouraging as the early data have been, uncertainty has remained over whether vaccines that appear safe and effective in developing antibodies in younger adults will work as well in older people, too. It’s a critical issue given that older individuals also are at greater risk for severe or life-threatening illness if they do get sick from COVID-19.

So, I’m pleased to highlight some recent findings, published in the New England Journal of Medicine [1], from an early Phase 1 clinical trial that was expanded to include 40 adults over age 55. While we eagerly await the results of ongoing and larger studies, these early data suggest that an innovative COVID-19 vaccine co-developed by NIH’s Vaccine Research Center (VRC), in partnership with Moderna Inc., Cambridge, MA, is both well tolerated and effective in generating a strong immune response when given to adults of any age.

The centerpiece of the vaccine in question, known as mRNA-1273, is a small, non-infectious snippet of messenger RNA (mRNA). When this mRNA is injected into muscle, a person’s own body will begin to make the key viral spike protein. As the immune system detects this spike protein, it spurs the production of antibodies that may help to fend off the novel SARS-CoV-2.

Earlier findings from the NIH-supported phase 1 human clinical trial found mRNA-1273 was safe and effective in generating a vigorous immune response in people ages 18 to 55, when delivered in two injections about a month apart. Based on those findings, a large Phase 3 clinical trial is currently enrolling 30,000 volunteers, with results expected in the next few weeks [2]. But, given that immune response to many other vaccines tends to grow weaker with age, how well would this new COVID-19 vaccine work for older individuals?

To find out, a team at Kaiser Permanente Washington Health Research Institute, Seattle, and Emory University School of Medicine, Atlanta, expanded the initial Phase 1 trial to include 20 healthy volunteers ages 56 to 70 and another 20 healthy volunteers ages 71 and older. Ten volunteers in each of the two older age groups received a lower dose of the vaccine (25 micrograms) in two injections given about a month apart. The other 10 in each age group received a higher dose (100 micrograms), given on the same schedule.

Here’s what they found:

• No volunteers suffered serious adverse events. The most common adverse events were mild-to-moderate in severity and included headache, fatigue, muscle aches, chills and pain at the injection site. Those symptoms occurred most often after the second dose and in individuals receiving the higher dose of 100 micrograms.

• Volunteers showed a rapid production of protective antibodies against the spike protein following immunization. After the second injection, all participants showed a strong immune response, with production of robust binding and neutralizing antibodies against SARS-CoV-2.

• The higher dose of 100 micrograms safely produced a stronger immune response compared to the lower dose, supporting its use in larger clinical studies.

• Most importantly, the immune response observed in these older individuals was comparable to that seen previously in younger adults.

The researchers will continue to follow the volunteer trial participants of all ages for about a year to monitor the vaccine’s longer-term effects. But these findings provided support for continued testing of this promising vaccine in older adults in the ongoing Phase 3 clinical trial.

There are currently four SARS-CoV-2 vaccines in phase 3 clinical trials in the United States (though two are currently on hold). Trials of two more vaccines are expected start in the next month or two.

It is not known whether all of these vaccines will have the same vigorous immune response in older individuals that has been demonstrated for this one. But if more than one of these vaccines turns out to be safe and effective, it will be important to know about the response in various populations, so that distribution to high-risk groups can be planned accordingly.

References:

[1] Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene M, Chappell JD, Denison MR, Stevens LJ, Pruijssers AJ, McDermott AB, Flach B, Lin BC, Doria-Rose NA, O’Dell S, Schmidt SD, Corbett KS, Swanson PA 2nd, Padilla M, Neuzil KM, Bennett H, Leav B, Makowski M, Albert J, Cross K, Edara VV, Floyd K, Suthar MS, Martinez DR, Baric R, Buchanan W, Luke CJ, Phadke VK, Rostad CA, Ledgerwood JE, Graham BS, Beigel JH; mRNA-1273 Study Group. N Engl J Med. 2020 Sep 29.

[2] “Phase 3 clinical trial of investigational vaccine for COVID-19 begins.” National Institutes of Heath. July 27, 2020

Links:

Coronavirus (COVID-19) (NIH)

COVID-19 Prevention Network (National Institute of Allergy and Infectious Diseases/NIH)

Dale and Betty Bumpers Vaccine Research Center (National Institute of Allergy and Infectious Diseases/NIH)

Moderna, Inc. (Cambridge, MA)

Safety and Immunogenicity Study of 2019-nCoV Vaccine (mRNA-1273) for Prophylaxis of SARS-CoV-2 Infection (COVID-19) (ClinicalTrials.gov)

NIH Support: National Institute of Allergy and Infectious Diseases


Researchers Publish Encouraging Early Data on COVID-19 Vaccine

Posted on by

Diagram of how mRNA vaccine works
Credit: NIH

People all around the globe are anxiously awaiting development of a safe, effective vaccine to protect against the deadly threat of coronavirus disease 2019 (COVID-19). Evidence is growing that biomedical research is on track to provide such help, and to do so in record time.

Just two days ago, in a paper in the New England Journal of Medicine [1], researchers presented encouraging results from the vaccine that’s furthest along in U.S. human testing: an innovative approach from NIH’s Vaccine Research Center (VRC), in partnership with Moderna Inc., Cambridge, MA [1]. The centerpiece of this vaccine is a small, non-infectious snippet of messenger RNA (mRNA). Injecting this mRNA into muscle will spur a person’s own body to make a key viral protein, which, in turn, will encourage the production of protective antibodies against SARS-CoV-2—the novel coronavirus that causes COVID-19.

While it generally takes five to 10 years to develop a vaccine against a new infectious agent, we simply don’t have that time with a pandemic as devastating as COVID-19. Upon learning of the COVID-19 outbreak in China early this year, and seeing the genome sequence of SARS-CoV-2 appear on the internet, researchers with NIH’s National Institute of Allergy and Infectious Diseases (NIAID) carefully studied the viral instructions, focusing on the portion that codes for a spike protein that the virus uses to bind to and infect human cells.

Because of their experience with the original SARS virus back in the 2000s, they thought a similar approach to vaccine development would work and modified an existing design to reflect the different sequence of the SARS-CoV-2 spike protein. Literally within days, they had created a vaccine in the lab. They then went on to work with Moderna, a biotech firm that’s produced personalized cancer vaccines. All told, it took just 66 days from the time the genome sequence was made available in January to the start of the first-in-human study described in the new peer-reviewed paper.

In the NIH-supported phase 1 human clinical trial, researchers found the vaccine, called mRNA-1273, to be safe and generally well tolerated. Importantly, human volunteers also developed significant quantities of neutralizing antibodies that target the virus in the right place to block it from infecting their cells.

Conducted at Kaiser Permanente Washington Health Research Institute, Seattle; and Emory University School of Medicine, Atlanta, the trial led by Kaiser Permanente’s Lisa Jackson involved healthy adult volunteers. Each volunteer received two vaccinations in the upper arm at one of three doses, given approximately one month apart.

The volunteers will be tracked for a full year, allowing researchers to monitor their health and antibody production. However, the recently published paper provides interim data on the phase 1 trial’s first 45 participants, ages 18 to 55, for the first 57 days after their second vaccination. The data revealed:

• No volunteers suffered serious adverse events.

• Optimal dose to elicit high levels of neutralizing antibody activity, while also protecting patient safety, appears to be 100 micrograms. Doses administered in the phase 1 trial were either 25, 100, or 250 micrograms.

• More than half of the volunteers reported fatigue, headache, chills, muscle aches, or pain at the injection site. Those symptoms were most common after the second vaccination and in volunteers who received the highest vaccine dose. That dose will not be used in larger trials.

• Two doses of 100 micrograms of the vaccine prompted a robust immune response, which was last measured 43 days after the second dose. These responses were actually above the average levels seen in blood samples from people who had recovered from COVID-19.

These encouraging results are being used to inform the next rounds of human testing of the mRNA-1273 vaccine. A phase 2 clinical trial is already well on its way to recruiting 600 healthy adults.This study will continue to profile the vaccine’s safety, as well as its ability to trigger an immune response.

Meanwhile, later this month, a phase 3 clinical trial will begin enrolling 30,000 volunteers, with particular focus on recruitment in regions and populations that have been particularly hard hit by the virus.

The design of that trial, referred to as a “master protocol,” had major contributions from the Accelerating COVID-19 Therapeutic Interventions and Vaccine (ACTIV) initiative, a remarkable public-private partnership involving 20 biopharmaceutical companies, academic experts, and multiple federal agencies. Now, a coordinated effort across the U.S. government, called Operation Warp Speed, is supporting rapid conduct of these clinical trials and making sure that millions of doses of any successful vaccine will be ready if the vaccine proves save and effective.

Results of this first phase 3 trial are expected in a few months. If you are interested in volunteering for these or other prevention trials, please check out NIH’s new COVID-19 clinical trials network.

There’s still a lot of work that remains to be done, and anything can happen en route to the finish line. But by pulling together, and leaning on the very best science, I am confident that we will be able rise to the challenge of ending this pandemic that has devastated so many lives.

Reference:

[1] A SARS-CoV-2 mRNA Vaccine—Preliminary Report. Jackson LA, Anderson EJ, Rouphael NG, Ledgerwood JE, Graham BS, Beigel JH, et al. NEJM. 2020 July 14. [Publication ahead of print]

Links:

Coronavirus (COVID-19) (NIH)

Dale and Betty Bumpers Vaccine Research Center (National Institute of Allergy and Infectious Diseases/NIH)

Moderna, Inc. (Cambridge, MA)

Safety and Immunogenicity Study of 2019-nCoV Vaccine (mRNA-1273) for Prophylaxis of SARS-CoV-2 Infection (COVID-19) (ClinicalTrials.gov)

NIH Launches Clinical Trials Network to Test COVID-19 Vaccines and Other Prevention Tools,” NIAID News Release, NIH, July 8, 2020.

Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) (NIH)

Explaining Operation Warp Speed (U.S. Department of Health and Human Services, Washington, DC)

NIH Support: National Institute of Allergy and Infectious Diseases


Previous Page Next Page