Skip to main content


Metabolomics: A New Approach to Understanding Glaucoma

Posted on by Michael F. Chiang, M.D., National Eye Institute

vacutainer of blood with multi-colored dots labeled Metabolites in blood. Some of the dots are high levels of triglycerides and diglycerides which leads to a higher chance to develop glaucoma.
Patients with high levels of triglycerides and diglycerides in blood samples were more likely to develop glaucoma. Credit Donny Bliss/NIH

Glaucoma remains one of the most common causes of vision loss and blindness in the U.S. and much of the world, disproportionately affecting older people, African Americans, and Hispanics and Latinos. Early signs of glaucoma can vary, from eye pressure to changes in the appearance of the optic nerve, and the disease can progress for years undetected while causing irreversible vision loss. More research is needed to understand the complex processes that underpin how glaucoma develops and progresses. If detected early enough, doctors can intervene and stop or slow its progression, thus preventing or minimizing vision loss.

While more than 120 genetic factors have been linked to glaucoma, these genes account for less than 10% of glaucoma cases. Scientists are exploring other ways to predict glaucoma, including studying metabolites to see if they hold any clues. These small molecules are produced by metabolism, including the breakdown of nutrients when we digest food or byproducts from the medicine we take. Identifying at-risk individuals based on their metabolic profile might present an opportunity to intercept disease before vision loss.

Researchers already use metabolites as biomarkers or indicators to help diagnose disease or assess disease risk. There’s a standard blood test called a comprehensive metabolic blood panel that doctors use to measure levels of metabolites circulating in your blood—sugars like glucose, minerals such as calcium, and proteins such as creatinine.

Your metabolome is the complete set of metabolites not in just your blood but in your entire body. National Eye Institute-funded researchers led by Louis Pasquale, Icahn School of Medicine at Mount Sinai, New York, in collaboration with Jae Hee Kang of Brigham and Women’s Hospital, Boston, recently explored 369 blood metabolites in relation to glaucoma in a large study.1

The research team examined blood that had been stored frozen from two long-term studies of health professionals: the Nurses’ Health Studies and the Health Professionals’ Follow-Up Study. They compared about 600 participants who had developed glaucoma after study enrollment to a group of similar participants who didn’t. On average, the participants who developed glaucoma did so about 10 years after their initial blood draw in the study.

The researchers found a particularly strong association between glaucoma and two classes of lipids (fats): triglycerides and diglycerides. Patients with elevated triglycerides and diglycerides were more likely to develop glaucoma, and the association was strongest in a subtype of glaucoma that causes early loss of central vision. They confirmed their findings in a cross-sectional analysis of data from the UK Biobank.

High levels of triglycerides have been linked to a variety of health problems, notably heart disease and stroke. The good news is that effective treatments to control triglyceride levels already exist. Statin drugs, for example, lower blood lipid levels. While studies looking at statin use and glaucoma risk have shown mixed results, we may learn that specific subtypes of glaucoma can be effectively controlled with statins. More research is needed to know if existing drugs might prevent glaucoma.

Pasquale’s work adds to a growing body of evidence that links health status to metabolism. Similar associations have been made between various metabolites and kidney cancer,2 pregnancy complications,3 type 2 diabetes,4 and Alzheimer’s disease.5 For researchers interested in exploring associations between metabolites and disease risk, the NIH Common Fund offers scientists a national and international repository for metabolomics data and metadata called the Metabolomics Workbench Metabolite Database, which contained more than 167,000 entries in 2022.

These findings and others offer the potential to prevent more and treat less. We urge anyone in an at-risk group, including people with a family history of glaucoma, to get regular, comprehensive eye exams.


[1] OA Zeleznik, et al. Plasma metabolite profile for primary open-angle glaucoma in three US cohorts and the UK Biobank. Nature Communications DOI:10.1038/s41467-023-38466-x (2023)

[2] OO Bifarin, et al. Urine-Based Metabolomics and Machine Learning Reveals Metabolites Associated with Renal Cell Carcinoma Stage. Cancers (Basel) DOI:10.3390/cancers13246253 (2021)

[3] EW Harville, et al. Untargeted analysis of first trimester serum to reveal biomarkers of pregnancy complications: a case-control discovery phase study. Scientific Reports DOI:10.1038/s41598-021-82804-1 (2021)

[4] Nightingale Health Biobank Collaborative Group, et al. Metabolomic and genomic prediction of common diseases in 477,706 participants in three national biobanks. medRxiv DOI: 10.1101/2023.06.09.23291213 (2023). *note this article is a pre-print and is not peer-reviewed

[5] DK Barupal, et al. Sets of coregulated serum lipids are associated with Alzheimer’s disease pathophysiology. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring. DOI:10.1016/j.dadm.2019.07.002 (2019)

NIH Support: National Eye Institute, National Cancer Institute

Snapshots of Life: Behold the Beauty of the Eye

Posted on by Dr. Francis Collins

Colorized cross section of a mouse eye

Credit: Bryan William Jones and Robert E. Marc, University of Utah

The eye is a complex marvel of nature. In fact, there are some 70 to 80 kinds of cells in the mammalian retina. This image beautifully illuminates the eye’s complexity, on a cellular level—showing how these cells are arranged and wired together to facilitate sight.

“Reading” the image from left to right, we first find the muscle cells, in peach, that move the eye in its socket. The green layer, next, is the sclera—the white part of the eye. The spongy-looking layers that follow provide blood to the retina. The thin layer of yellow is the retinal pigment epithelium. The photoreceptors, in shades of pink, detect photons and transmit the information to the next layer down: the bipolar and horizontal cells (purple). From the bipolar cells, information flows to the amacrine and ganglion cells (blue, green, and turquoise) and then out of the retina via the optic nerve (the white plume that seems to billow out across the upper-right side of the eye), which transmits data to the brain for processing.

Cool Videos: Metabolomics

Posted on by Dr. Francis Collins

Metabolomics video screenshot

Today’s feature in my Cool Video series is a scientific film noir from the University of Florida in Gainesville. Channeling Humphrey Bogart’s hard-boiled approach to detective work, the protagonist of this video is tracking down metabolites—molecules involved in biological mysteries with more twists and turns than “The Maltese Falcon.”

If you’d like a few more details before or after watching the video, here’s how the scientists themselves describe their project: “Inside our cells, chemical heroes, victims, and villains leave behind clues about our health. Meet Dr. Art Edison, one of many metabolomics PIs who are on the case. Their quest? To tail and fingerprint small molecules, called metabolites, which result from the chemical processes that fuel and sustain life. Metabolites can shed light on the state of health, nutrition, or disease in a living thing—whether human, animal, or plant. Funded by National Institutes of Health grant U24DK097209, the University of Florida Southeast Center for Integrated Metabolomics is sleuthing through these cellular secrets.”

Metabolomics: Taking Aim at Diabetic Kidney Failure

Posted on by Dr. Francis Collins

Patients with red tubes attached to their arms

Caption: Dialysis is often used to treat kidney failure related to diabetes.

My own research laboratory has worked on the genetics of diabetes for two decades. One of my colleagues from those early days, Andrzej Krolewski, a physician-scientist at the Joslin Diabetes Center in Boston, wondered why about one-third of people with type 2 diabetes eventually develop kidney damage that progresses to end-stage renal disease (ESRD), but others don’t. A stealthy condition that can take years for symptoms to appear, ESRD occurs when the kidneys fail, allowing toxic wastes to build up. The only treatments available are dialysis or kidney transplants.