Skip to main content

machine learning

Using Artificial Intelligence to Catch Irregular Heartbeats

Posted on by

ECG Readout
Credit: gettyimages/enot-poloskun

Thanks to advances in wearable health technologies, it’s now possible for people to monitor their heart rhythms at home for days, weeks, or even months via wireless electrocardiogram (EKG) patches. In fact, my Apple Watch makes it possible to record a real-time EKG whenever I want. (I’m glad to say I am in normal sinus rhythm.)

For true medical benefit, however, the challenge lies in analyzing the vast amounts of data—often hundreds of hours worth per person—to distinguish reliably between harmless rhythm irregularities and potentially life-threatening problems. Now, NIH-funded researchers have found that artificial intelligence (AI) can help.

A powerful computer “studied” more than 90,000 EKG recordings, from which it “learned” to recognize patterns, form rules, and apply them accurately to future EKG readings. The computer became so “smart” that it could classify 10 different types of irregular heart rhythms, including atrial fibrillation (AFib). In fact, after just seven months of training, the computer-devised algorithm was as good—and in some cases even better than—cardiology experts at making the correct diagnostic call.

EKG tests measure electrical impulses in the heart, which signal the heart muscle to contract and pump blood to the rest of the body. The precise, wave-like features of the electrical impulses allow doctors to determine whether a person’s heart is beating normally.

For example, in people with AFib, the heart’s upper chambers (the atria) contract rapidly and unpredictably, causing the ventricles (the main heart muscle) to contract irregularly rather than in a steady rhythm. This is an important arrhythmia to detect, even if it may only be present occasionally over many days of monitoring. That’s not always easy to do with current methods.

Here’s where the team, led by computer scientists Awni Hannun and Andrew Ng, Stanford University, Palo Alto, CA, saw an AI opportunity. As published in Nature Medicine, the Stanford team started by assembling a large EKG dataset from more than 53,000 people [1]. The data included various forms of arrhythmia and normal heart rhythms from people who had worn the FDA-approved Zio patch for about two weeks.

The Zio patch is a 2-by-5-inch adhesive patch, worn much like a bandage, on the upper left side of the chest. It’s water resistant and can be kept on around the clock while a person sleeps, exercises, or takes a shower. The wireless patch continuously monitors heart rhythms, storing EKG data for later analysis.

The Stanford researchers looked to machine learning to process all the EKG data. In machine learning, computers rely on large datasets of examples in order to learn how to perform a given task. The accuracy improves as the machine “sees” more data.

But the team’s real interest was in utilizing a special class of machine learning called deep neural networks, or deep learning. Deep learning is inspired by how our own brain’s neural networks process information, learning to focus on some details but not others.

In deep learning, computers look for patterns in data. As they begin to “see” complex relationships, some connections in the network are strengthened while others are weakened. The network is typically composed of multiple information-processing layers, which operate on the data and compute increasingly complex and abstract representations.

Those data reach the final output layer, which acts as a classifier, assigning each bit of data to a particular category or, in the case of the EKG readings, a diagnosis. In this way, computers can learn to analyze and sort highly complex data using both more obvious and hidden features.

Ultimately, the computer in the new study could differentiate between EKG readings representing 10 different arrhythmias as well as a normal heart rhythm. It could also tell the difference between irregular heart rhythms and background “noise” caused by interference of one kind or another, such as a jostled or disconnected Zio patch.

For validation, the computer attempted to assign a diagnosis to the EKG readings of 328 additional patients. Independently, several expert cardiologists also read those EKGs and reached a consensus diagnosis for each patient. In almost all cases, the computer’s diagnosis agreed with the consensus of the cardiologists. The computer also made its calls much faster.

Next, the researchers compared the computer’s diagnoses to those of six individual cardiologists who weren’t part of the original consensus committee. And, the results show that the computer actually outperformed these experienced cardiologists!

The findings suggest that artificial intelligence can be used to improve the accuracy and efficiency of EKG readings. In fact, Hannun reports that iRhythm Technologies, maker of the Zio patch, has already incorporated the algorithm into the interpretation now being used to analyze data from real patients.

As impressive as this is, we are surely just at the beginning of AI applications to health and health care. In recognition of the opportunities ahead, NIH has recently launched a working group on AI to explore ways to make the best use of existing data, and harness the potential of artificial intelligence and machine learning to advance biomedical research and the practice of medicine.

Meanwhile, more and more impressive NIH-supported research featuring AI is being published. In my next blog, I’ll highlight a recent paper that uses AI to make a real difference for cervical cancer, particularly in low resource settings.

Reference:

[1] Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, Ng AY.
Nat Med. 2019 Jan;25(1):65-69.

Links:

Arrhythmia (National Heart, Lung, and Blood Institute/NIH)

Video: Artificial Intelligence: Collecting Data to Maximize Potential (NIH)

Andrew Ng (Palo Alto, CA)

NIH Support: National Heart, Lung, and Blood Institute


Attending NIH Artificial Intelligence Workshop

Posted on by

Craig Mundie and Francis Collins

A lot of great discussion took place at the NIH Workshop on Artificial Intelligence: Collecting Data to Maximize Potential.” Craig Mundie (left), president of Mundie and Associates, San Francisco, gave a tremendous keynote address. The one-day workshop was held on July 23, 2018. Credit: NIH


Teaching Computers to “See” the Invisible in Living Cells

Posted on by

Brain Cell Analysis

Caption: While analyzing brain cells, a computer program “thinks” about which cellular structure to identify.
Credit: Steven Finkbeiner, University of California, San Francisco and the Gladstone Institutes

For centuries, scientists have trained themselves to look through microscopes and carefully study their structural and molecular features. But those long hours bent over a microscope poring over microscopic images could be less necessary in the years ahead. The job of analyzing cellular features could one day belong to specially trained computers.

In a new study published in the journal Cell, researchers trained computers by feeding them paired sets of fluorescently labeled and unlabeled images of brain tissue millions of times in a row [1]. This allowed the computers to discern patterns in the images, form rules, and apply them to viewing future images. Using this so-called deep learning approach, the researchers demonstrated that the computers not only learned to recognize individual cells, they also developed an almost superhuman ability to identify the cell type and whether a cell was alive or dead. Even more remarkable, the trained computers made all those calls without any need for harsh chemical labels, including fluorescent dyes or stains, which researchers normally require to study cells. In other words, the computers learned to “see” the invisible!


New ‘Liquid Biopsy’ Shows Early Promise in Detecting Cancer

Posted on by

Liquid Biopsy Schematic

Caption: Liquid biopsy. Tumor cells shed protein and DNA into bloodstream for laboratory analysis and early cancer detection.

Early detection usually offers the best chance to beat cancer. Unfortunately, many tumors aren’t caught until they’ve grown relatively large and spread to other parts of the body. That’s why researchers have worked so tirelessly to develop new and more effective ways of screening for cancer as early as possible. One innovative approach, called “liquid biopsy,” screens for specific molecules that tumors release into the bloodstream.

Recently, an NIH-funded research team reported some encouraging results using a “universal” liquid biopsy called CancerSEEK [1]. By analyzing samples of a person’s blood for eight proteins and segments of 16 genes, CancerSEEK was able to detect most cases of eight different kinds of cancer, including some highly lethal forms—such as pancreatic, ovarian, and liver—that currently lack screening tests.

In a study of 1,005 people known to have one of eight early-stage tumor types, CancerSEEK detected the cancer in blood about 70 percent of the time, which is among the best performances to date for a blood test. Importantly, when CancerSEEK was performed on 812 healthy people without cancer, the test rarely delivered a false-positive result. The test can also be run relatively cheaply, at an estimated cost of less than $500.


Creative Minds: Using Machine Learning to Understand Genome Function

Posted on by

Anshul Kundaje

Anshul Kundaje / Credit: Nalini Kartha

Science has always fascinated Anshul Kundaje, whether it was biology, physics, or chemistry. When he left his home country of India to pursue graduate studies in electrical engineering at Columbia University, New York, his plan was to focus on telecommunications and computer networks. But a course in computational genomics during his first semester showed him he could follow his interest in computing without giving up his love for biology.

Now an assistant professor of genetics and computer science at Stanford University, Palo Alto, CA, Kundaje has received a 2016 NIH Director’s New Innovator Award to explore not just how the human genome sequence encodes function, but also why it functions in the way that it does. Kundaje even envisions a time when it might be possible to use sophisticated computational approaches to predict the genomic basis of many human diseases.


Previous Page Next Page