Skip to main content


Two Studies Show COVID-19 Antibodies Persist for Months

Posted on by

Antibodies against SARS-CoV-2
Caption: Artistic rendering of SARS-CoV-2 virus (orange) covered with antibodies (white), generated by an immune B cell (gray) at the bottom left. Credit: iStock/selvanegra

More than 8 million people in the United States have now tested positive for COVID-19. For those who’ve recovered, many wonder if fending off SARS-CoV-2—the coronavirus that causes COVID-19—one time means their immune systems will protect them from reinfection. And, if so, how long will this “acquired immunity” last?

The early data brought hope that acquired immunity was possible. But some subsequent studies have suggested that immune protection might be short-lived. Though more research is needed, the results of two recent studies, published in the journal Science Immunology, support the early data and provide greater insight into the nature of the human immune response to this coronavirus [1,2].

The new findings show that people who survive a COVID-19 infection continue to produce protective antibodies against key parts of the virus for at least three to four months after developing their first symptoms. In contrast, some other antibody types decline more quickly. The findings offer hope that people infected with the virus will have some lasting antibody protection against re-infection, though for how long still remains to be determined.

In one of the two studies, partly funded by NIH, researchers led by Richelle Charles, Massachusetts General Hospital, Boston, sought a more detailed understanding of antibody responses following infection with SARS-CoV-2. To get a closer look, they enrolled 343 patients, most of whom had severe COVID-19 requiring hospitalization. They examined their antibody responses for up to 122 days after symptoms developed and compared them to antibodies in more than 1,500 blood samples collected before the pandemic began.

The researchers characterized the development of three types of antibodies in the blood samples. The first type was immunoglobulin G (IgG), which has the potential to confer sustained immunity. The second type was immunoglobulin A (IgA), which protects against infection on the body’s mucosal surfaces, such as those found in the respiratory and gastrointestinal tracts, and are found in high levels in tears, mucus, and other bodily secretions. The third type is immunoglobulin M (IgM), which the body produces first when fighting an infection.

They found that all three types were present by about 12 days after infection. IgA and IgM antibodies were short-lived against the spike protein that crowns SARS-CoV-2, vanishing within about two months.

The good news is that the longer-lasting IgG antibodies persisted in these same patients for up to four months, which is as long as the researchers were able to look. Levels of those IgG antibodies also served as an indicator for the presence of protective antibodies capable of neutralizing SARS-CoV-2 in the lab. Even better, that ability didn’t decline in the 75 days after the onset of symptoms. While longer-term study is needed, the findings lend support to evidence that protective antibody responses against the novel virus do persist.

The other study came to very similar conclusions. The team, led by Jennifer Gommerman and Anne-Claude Gingras, University of Toronto, Canada, profiled the same three types of antibody responses against the SARS-CoV-2 spike protein, They created the profiles using both blood and saliva taken from 439 people, not all of whom required hospitalization, who had developed COVID-19 symptoms from 3 to 115 days prior. The team then compared antibody profiles of the COVID-19 patients to those of people negative for COVID-19.

The researchers found that the antibodies against SARS-CoV-2 were readily detected in blood and saliva. IgG levels peaked about two weeks to one month after infection, and then remained stable for more than three months. Similar to the Boston team, the Canadian group saw IgA and IgM antibody levels drop rapidly.

The findings suggest that antibody tests can serve as an important tool for tracking the spread of SARS-CoV-2 through our communities. Unlike tests for the virus itself, antibody tests provide a means to detect infections that occurred sometime in the past, including those that may have been asymptomatic. The findings from the Canadian team further suggest that tests of IgG antibodies in saliva may be a convenient way to track a person’s acquired immunity to COVID-19.

Because IgA and IgM antibodies decline more quickly, testing for these different antibody types also could help to distinguish between an infection within the last two months and one that more likely occurred even earlier. Such details are important for filling in gaps in our understanding COVID-19 infections and tracking their spread in our communities.

Still, there are rare reports of individuals who survived one bout with COVID-19 and were infected with a different SARS-CoV-2 strain a few weeks later [3]. The infrequency of such reports, however, suggests that acquired immunity after SARS-CoV-2 infection is generally protective.

There remain many open questions, and answering them will require conducting larger studies with greater diversity of COVID-19 survivors. So, I’m pleased to note that the NIH’s National Cancer Institute (NCI) recently launched the NCI Serological Sciences Network for COVID19 (SeroNet), now the nation’s largest coordinated effort to characterize the immune response to COVID-19 [4].

The network was established using funds from an emergency Congressional appropriation of more than $300 million to develop, validate, improve, and implement antibody testing for COVID-19 and related technologies. With help from this network and ongoing research around the world, a clearer picture will emerge of acquired immunity that will help to control future outbreaks of COVID-19.


[1] Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Iyer AS, Jones FK, Nodoushani A, Ryan ET, Harris JB, Charles RC, et al. Sci Immunol. 2020 Oct 8;5(52):eabe0367.

[2] Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Isho B, Abe KT, Zuo M, Durocher Y, McGeer AJ, Gommerman JL, Gingras AC, et al. Sci Immunol. 2020 Oct 8;5(52):eabe5511.

[3] What reinfections mean for COVID-19. Iwasaki A. Lancet Infect Dis, 2020 October 12. [Epub ahead of print]

[4] NIH to launch the Serological Sciences Network for COVID-19, announce grant and contract awardees. National Institutes of Health. 2020 October 8.


Coronavirus (COVID-19) (NIH)

Charles Lab (Massachusetts General Hospital, Boston)

Gingras Lab (University of Toronto, Canada)

Jennifer Gommerman (University of Toronto, Canada)

NCI Serological Sciences Network for COVID-19 (SeroNet) (National Cancer Institute/NIH)

NIH Support: National Institute of Allergy and Infectious Diseases; National Institute of General Medical Sciences; National Cancer Institute

Study Finds Nearly Everyone Who Recovers From COVID-19 Makes Coronavirus Antibodies

Posted on by

Credit: NIH

There’s been a lot of excitement about the potential of antibody-based blood tests, also known as serology tests, to help contain the coronavirus disease 2019 (COVID-19) pandemic. There’s also an awareness that more research is needed to determine when—or even if—people infected with SARS-CoV-2, the novel coronavirus that causes COVID-19, produce antibodies that may protect them from re-infection.

A recent study in Nature Medicine brings much-needed clarity, along with renewed enthusiasm, to efforts to develop and implement widescale antibody testing for SARS-CoV-2 [1]. Antibodies are blood proteins produced by the immune system to fight foreign invaders like viruses, and may help to ward off future attacks by those same invaders.

In their study of blood drawn from 285 people hospitalized with severe COVID-19, researchers in China, led by Ai-Long Huang, Chongqing Medical University, found that all had developed SARS-CoV-2 specific antibodies within two to three weeks of their first symptoms. Although more follow-up work is needed to determine just how protective these antibodies are and for how long, these findings suggest that the immune systems of people who survive COVID-19 have been be primed to recognize SARS-CoV-2 and possibly thwart a second infection.

Specifically, the researchers determined that nearly all of the 285 patients studied produced a type of antibody called IgM, which is the first antibody that the body makes when fighting an infection. Though only about 40 percent produced IgM in the first week after onset of COVID-19, that number increased steadily to almost 95 percent two weeks later. All of these patients also produced a type of antibody called IgG. While IgG often appears a little later after acute infection, it has the potential to confer sustained immunity.

To confirm their results, the researchers turned to another group of 69 people diagnosed with COVID-19. The researchers collected blood samples from each person upon admission to the hospital and every three days thereafter until discharge. The team found that, with the exception of one woman and her daughter, the patients produced specific antibodies against SARS-CoV-2 within 20 days of their first symptoms of COVID-19.

Meanwhile, innovative efforts are being made on the federal level to advance COVID-19 testing. The NIH just launched the Rapid Acceleration of Diagnostics (RADx) Initiative to support a variety of research activities aimed at improving detection of the virus. As I recently highlighted on this blog, one key component of RADx is a “shark tank”-like competition to encourage science and engineering’s most inventive minds to develop rapid, easy-to-use technologies to test for the presence of SARS-CoV-2.

On the serology testing side, the NIH’s National Cancer Institute has been checking out kits that are designed to detect antibodies to SARS-CoV-2 and have found mixed results. In response, the Food and Drug Administration just issued its updated policy on antibody tests for COVID-19. This guidance sets forth precise standards for laboratories and commercial manufacturers that will help to speed the availability of high-quality antibody tests, which in turn will expand the capacity for rapid and widespread testing in the United States.

Finally, it’s important to keep in mind that there are two different types of SARS-CoV-2 tests. Those that test for the presence of viral nucleic acid or protein are used to identify people who are acutely infected and should be immediately quarantined. Tests for IgM and/or IgG antibodies to the virus, if well-validated, indicate a person has previously been infected with COVID-19 and is now potentially immune. Two very different types of tests—two very different meanings.

There’s still a way to go with both virus and antibody testing for COVID-19. But as this study and others begin to piece together the complex puzzle of antibody-mediated immunity, it will be possible to learn more about the human body’s response to SARS-CoV-2 and home in on our goal of achieving safe, effective, and sustained protection against this devastating disease.


[1] Antibody responses to SARS-CoV-2 in patients with COVID-19. Long QX, Huang AI, et al. Nat Med. 2020 Apr 29. [Epub ahead of print]


Coronaviruses (NIH)

NIH Begins Study to Quantify Undetected Cases of Coronavirus Infection,” NIH News Release, April 10, 2020.

NIH mobilizes national innovation initiative for COVID-19 diagnostics,” NIH News Release, April 29, 2020.

Policy for Coronavirus Disease-2019 Tests During the Public Health Emergency (Revised), May 2020 (Food and Drug Administration)