Skip to main content

hunger

Snapshots of Life: Making Sense of Smell

Posted on by Dr. Francis Collins

Modified rendering of mouse olfactory bulb

Credit: Jeremy McIntyre, University of Florida College of Medicine, Gainesville

You’ve probably learned the hard way about how the grocery list can go out the window when you go shopping on an empty stomach. Part of the reason is that our sense of smell intensifies when we’re hungry, making the aroma of freshly baked cookies, fried chicken, and other tempting goodies even more noticeable. And this beautiful micrograph helps to provide a biological explanation for this phenomenon.

The image, which looks like something that Van Gogh might have painted, shows a thick mesh of neurons in a small cross section of a mouse’s olfactory bulb, a structure located in the forebrain of all vertebrates (including humans!) that processes input about odors detected by the nose. Here, you see specialized neurons called mitral cells (red) that can receive signals from the hypothalamus, a brain region known for its role in hunger and energy balance. Also fluorescently labeled are receptors that detect acetylcholine signals from the brain (green) and the nuclei of all cells in the olfactory bulb (blue).


Tracing the Neural Circuitry of Appetite

Posted on by Dr. Francis Collins

MC4R PVH neurons-the heart of hunger
Caption: A stylized image of the MC4R-expressing neurons (in red) within the brain’s PVH, which is the “heart of hunger”
Credit: Michael Krashes, NIDDK, NIH

If you’ve ever skipped meals for a whole day or gone on a strict, low-calorie diet, you know just how powerful the feeling of hunger can be. Your stomach may growl and rumble, but, ultimately, it’s your brain that signals when to start eating—and when to stop. So, learning more about the brain’s complex role in controlling appetite is crucial to efforts to develop better ways of helping the millions of Americans afflicted with obesity [1].

Thanks to recent technological advances that make it possible to study the brain’s complex circuitry in real-time, a team of NIH-funded researchers recently made some important progress in understanding the neural basis for appetite. In a study published in the journal Nature Neuroscience, the researchers used a variety of innovative techniques to control activity in the brains of living mice, and identified one particular circuit that appears to switch hunger off and on [2].