It was an amazing experience to touch base once again with Kate Rubins, a NASA astronaut aboard the International Space Station. Connecting via live downlink on March 26, 2021, we discussed how space-based research can enable valuable biomedical advances on our planet. For example, over the past five years, NIH’s National Center for Advancing Translational Sciences has funded a series of tissue chip payloads that have launched to the orbiting laboratory. Rubins, who is a biologist and infectious disease expert, has facilitated three of these projects: Cardinal Heart from Stanford University, Electrical Stimulation of Human Myocytes in Microgravity from the University of Florida, and Cartilage-Bone-Synovium from the Massachusetts Institute of Technology.
A big challenge in unlocking the mysteries of aging is how long you need to study humans, or even human cells, to get answers. But, in partnership with NASA, NIH is hoping that space will help facilitate this important area of research.
It’s already known, from what’s been seen in astronauts, that the weightless conditions found in space can speed various processes associated with aging. So, might it be possible to use the space station as a lab to conduct aging experiments?