Zika Vaccine: Two Candidates Show Promise in Mice

 

Zika Virus

Caption: Zika virus (red), isolated from a microcephaly case in Brazil. The virus is associated with cellular membranes in the center.
Credit: NIAID

Last February, the World Health Organization declared a public health emergency over concerns about very serious birth defects in Brazil and their possible link to Zika virus. But even before then, concerns about the unprecedented spread of Zika virus in Brazil and elsewhere in Latin America had prompted NIH-funded scientists to step up their efforts to combat this emerging infectious disease threat. Over the last year, research aimed at understanding the mosquito-borne virus has progressed rapidly, and we now appear to be getting closer to a Zika vaccine.

In a recent study in the journal Nature, researchers found that a single dose of either of two experimental vaccines completely protected mice against a major viral strain responsible for the Zika outbreak in Brazil [1]. Caution is certainly warranted when extrapolating these (or any other) findings from mice to people. But, taking into account the fact that researchers have already developed safe and effective human vaccines for several related viruses, the new work represents a very encouraging milestone on the road toward a much-needed Zika vaccine for humans.

Continue reading

Global Effort to End AIDS Would Save Millions of Lives

Prevent HIV AIDS

Scanning electromicrograph of an HIV-infected T cell/NIAID

Almost 37 million people around the world are now infected with human immunodeficiency virus (HIV), the virus that causes AIDS [1]. But many don’t know they are infected or lack access to medical care. Even though major strides have been made in treating the infection, less than half receive antiretroviral therapy (ART) that could prevent full-blown AIDS and reduce the likelihood of the virus being transmitted to other people. Now, a new report restores hope that an end to this very serious public health challenge could be within reach—but that will require a major boost in commitment and resources.

The study conducted by an NIH-funded research team evaluated the costs and expected life-saving returns associated with ambitious goals for HIV testing and treatment, the so-called 90-90-90 program, issued by the Joint United Nations Programme on HIV/AIDS (UNAIDS) in 2014 [2]. The new analysis, based on HIV disease progression and treatment data in South Africa, finds that those goals, though expensive to implement, can be achieved cost-effectively, potentially containing the AIDS epidemic and saving many millions of lives around the globe.

Continue reading

Snapshots of Life: Portrait of Zika Virus

Cross section of the Zika virus


Credit: David Goodsell, The Scripps Research Institute

This lively interplay of shape and color is an artistic rendering of the Zika virus preparing to enter a cell (blue) by binding to its protein receptors (green). The spherical structures (pink) represent two Zika viruses in a blood vessel filled with blood plasma cells (tan). The virus in the middle in cross section shows viral envelope proteins (red) studding the outer surface, with membrane proteins (pink) embedded in a fatty layer of lipids (light purples). In the innermost circle, you can see the viral genome (yellow) coiled around capsid proteins (orange).

This image was sketched and hand-painted with watercolors by David Goodsell, a researcher and illustrator at The Scripps Research Institute, La Jolla, CA. Goodsell put paint and science to paper as part of the “Molecule of the Month” series run by RCSB Protein Data Bank (PDB), which NIH co-supports with the National Science Foundation and the Department of Energy. The PDB, which contains structural data on thousands of proteins and small molecules, uses its “Molecule of the Month” series to help students visualize a molecule or virus and to encourage their exploration of structural biology and its applications to medicine.

Continue reading

Zika and Birth Defects: The Evidence Mounts

Zike virus infection

Caption: Human neural progenitor cells (gray) infected with Zika virus (green) increased the enzyme caspase-3 (red), suggesting increased cell death.
Credit: Sarah C. Ogden, Florida State University, Tallahassee

Recently, public health officials have raised major concerns over the disturbing spread of the mosquito-borne Zika virus among people living in and traveling to many parts of Central and South America [1]. While the symptoms of Zika infection are typically mild, grave concerns have arisen about its potential impact during pregnancy. The concerns stem from the unusual number of births of children with microcephaly, a very serious condition characterized by a small head and damaged brain, coinciding with the spread of Zika virus. Now, two new studies strengthen the connection between Zika and an array of birth defects, including, but not limited to, microcephaly.

In the first study, NIH-funded laboratory researchers show that Zika virus can infect and kill human neural progenitor cells [2]. Those progenitor cells give rise to the cerebral cortex, a portion of the brain often affected in children with microcephaly. The second study, involving a small cohort of women diagnosed with Zika virus during their pregnancies in Rio de Janeiro, Brazil, suggests that the attack rate is disturbingly high, and microcephaly is just one of many risks to the developing fetus. [3]

Continue reading

Zika Virus: An Emerging Health Threat

Credit: Kraemer et al. eLife 2015;4:e08347

For decades, the mosquito-transmitted Zika virus was mainly seen in equatorial regions of Africa and Asia, where it caused a mild, flu-like illness and rash in some people. About 10 years ago, the picture began to expand with the appearance of Zika outbreaks in the Pacific islands. Then, last spring, Zika popped up in South America, where it has so far infected more than 1 million Brazilians and been tentatively linked to a steep increase in the number of babies born with microcephaly, a very serious condition characterized by a small head and brain [1]. And Zika’s disturbing march may not stop there.

In a new study in the journal The Lancet, infectious disease modelers calculate that Zika virus has the potential to spread across warmer and wetter parts of the Western Hemisphere as local mosquitoes pick up the virus from infected travelers and then spread the virus to other people [2]. The study suggests that Zika virus could eventually reach regions of the United States in which 60 percent of our population lives. This highlights the need for NIH and its partners in the public and private sectors to intensify research on Zika virus and to look for new ways to treat the disease and prevent its spread.

Continue reading