Skip to main content

FASEB Bioart 2015

Snapshots of Life: Finding a Cube for Cancer

Posted on by Dr. Francis Collins

 

Targeted drug delivery systems for cancer treatment

Jenolyn F. Alexander and Biana Godin, Houston Methodist Research Institute; Veronika Kozlovskaya and Eugenia Kharlampieva, University of Alabama at Birmingham.

Creative photographers have long experimented with superimposing images, one over the other, to produce striking visual effects. Now a group of NIH-supported scientists at Houston Methodist Research Institute and their colleagues have done the same thing to highlight their work in the emerging field of cancer nanomedicine, using microscopic materials to deliver cancer treatments with potentially greater precision. In the process, the researchers generated a photographic work of art that was a winner in the Federation of American Societies for Experimental Biology 2015 Bioart competition.

The gold cubes are man-made polymer microcarriers, just 2 micrometers wide (by comparison, human cells generally range in diameter from 7 to 20 micrometers), designed to transport chemotherapy drugs directly to tumor cells. These experimental cubes, enlarged in the upper left part of the photo with a scanning electron microscope for better viewing, have been superimposed onto a second photograph snapped with a confocal fluorescence microscope. It shows similar cube-shaped microcarriers (yellow) inside cultured breast cancer cells (nucleus is purple, cytoplasm is turquoise).


Snapshots of Life: Arabidopsis Art

Posted on by Dr. Francis Collins

Arabidopsis

Credit: Nathanaël Prunet, California Institute of Technology, Pasadena

Modern sculptors might want to take a few notes from Mother Nature. The striking, stone-like forms that you see above are a micrograph of flower buds from the mustard plant Arabidopsis thaliana, which serves as an important model organism in biomedical research. In the center are the shoot apical meristems, consisting of undifferentiated stem cells (gray) that give rise to the flowers. Around the edge are buds that are several hours older, in which the flowers have just begun to form off of the shoot apical meristems. And, to the bottom left, are four structures that are the early sepals that will surround the fully formed flower that will bloom in a few weeks. The colored circles indicate areas of gene activity involved in determining the gender of the resulting flower, with masculinizing genes marked in green and feminizing in red.

This image, a winner in the Federation of American Societies for Experimental Biology’s 2015 BioArt competition, is the creation of postdoctoral student Nathanaёl Prunet, now in the NIH-supported lab of Elliot Meyerowitz at the California Institute of Technology, Pasadena, CA. Using scanning electron microscopy, Prunet snapped multiple 2D photographs of Arabidopsis buds at different tissue depths and computationally combined them to produce this 3D image.


Snapshots of Life: Development in Exquisite Detail

Posted on by Dr. Francis Collins

Developmental biology

Credit: Shachi Bhatt and Paul Trainor, Stowers Institute for Medical Research, Kansas City, MO

If you’ve ever tried to take photos of wiggly kids, you know that it usually takes several attempts before you get the perfect shot. It’s often the same for biomedical researchers when taking images with microscopes because there are so many variables—from sample preparation to instrument calibration—to take into account. Still, there are always exceptions where everything comes together just right, and you are looking at one of them! On her first try at using a confocal microscope to image this cross-section of a mouse embryo’s torso, postdoc Shachi Bhatt captured a gem of an image that sheds new light on mammalian development.

Bhatt, who works in the NIH-supported lab of Paul Trainor at the Stowers Institute for Medical Research, Kansas City, MO, produced this micrograph as part of a quest to understand the striking parallels seen between the development of the nervous system and the vascular system in mammals. Fluorescent markers were used to label proteins uniquely expressed in each type of tissue: reddish-orange delineates developing nerve cells; gray highlights developing blood vessels; and yellow shows where the nerve cells and blood vessels overlap.


Cool Videos: Another Kind of Art Colony

Posted on by Dr. Francis Collins

BioArt-Berkmen and PenilAs long as researchers have been growing bacteria on Petri dishes using a jelly-like growth medium called agar, they have been struck by the interesting colors and growth patterns that microbes can produce from one experiment to the next. In the 1920s, Sir Alexander Fleming, the Scottish biologist who discovered penicillin, was so taken by this phenomenon that he developed his own palette of bacterial “paints” that he used in his spare time to create colorful pictures of houses, ballerinas, and other figures on the agar [1].

Fleming’s enthusiasm for agar art lives on among the current generation of microbiologists. In this short video, the agar (yellow) is seeded with bacterial colonies and, through the magic of time-lapse photography, you can see the growth of the colonies into what appears to be a lovely bouquet of delicate flowers. This piece of living art, developing naturally by bacterial colony expansion over the course of a week or two, features members of three bacterial genera: Serratia (red), Bacillus (white), and Nesterenkonia (light yellow).


Snapshots of Life: A Kaleidoscope of Worms

Posted on by Dr. Francis Collins

C. elegans

Credit: Adam Brown and David Biron, University of Chicago

What might appear to be a view inside an unusual kaleidoscope is actually a laboratory plate full of ravenous roundworms (Caenorhabditis elegans) as seen through a microscope. Tens of thousands of worms (black), each about 1 millimeter in length at adulthood, are grazing on a field of bacteria beneath them. The yellow is a jelly-like growth medium called agar that feeds the bacteria, and the orange along the borders was added to enhance the sunburst effect.

The photo was snapped and stylized by NIH training grantee Adam Brown, a fourth-year Ph.D. student in the lab of David Biron at the University of Chicago. Brown uses C. elegans to study the neurotransmitter serotonin, a popular drug target in people receiving treatment for depression and other psychiatric disorders. This tiny, soil-dwelling worm is a go-to model organism for neuroscientists because of its relative simplicity, short life spans, genetic malleability, and complete cell-fate map. By manipulating the different components of the serotonin-signaling system in C. elegans, Brown and his colleagues hope to better understand the most basic circuitry in the central nervous system that underlies decision making, in this case choosing to feed or forage.


Snapshots of Life: Green Eggs and Heart Valves

Posted on by Dr. Francis Collins

three-day old chicken embryo

Credit: Jessica Ryvlin, Stephanie Lindsey, and Jonathan Butcher, Cornell University, Ithaca, NY

What might appear in this picture to be an exotic, green glow worm served up on a collard leaf actually comes from something we all know well: an egg. It’s a 3-day-old chicken embryo that’s been carefully removed from its shell, placed in a special nutrient-rich bath to keep it alive, and then photographed through a customized stereo microscope. In the middle of the image, just above the blood vessels branching upward, you can see the outline of a transparent, developing eye. Directly to the left is the embryonic heart, which at this early stage is just a looped tube not yet with valves or pumping chambers.

Developing chicks are one of the most user-friendly models for studying normal and abnormal heart development. Human and chick hearts have a lot in common structurally, with four chambers and four valves pumping two circulations of blood in parallel. Unlike mammalian embryos tucked away in the womb, researchers have free range to study the chick heart in or out of the egg as it develops from a simple looped tube to a four-chambered organ.

Jonathan Butcher and his NIH-supported research group at Cornell University, Ithaca, NY, snapped this photo, a winner in the Federation of American Societies for Experimental Biology’s 2015 BioArt competition, to monitor differences in blood flow through the developing chick heart. You can get a sense of these differences by the varying intensities of green fluorescence in the blood vessels. The Butcher lab is interested in understanding how the force of the blood flow triggers the switching on and off of genes responsible for making functional heart valves. Although the four valves aren’t yet visible in this image, they will soon elongate into flap-like structures that open and close to begin regulating the normal flow of blood through the heart.


Snapshots of Life: Stronger Than It Looks

Posted on by Dr. Francis Collins

Structure of dental enamel

Credit: Olivier Duverger and Maria I. Morasso, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH

If you went out and asked folks what they’re seeing in this picture, most would probably guess an elegantly woven basket, or a soft, downy feather. But what this scanning electron micrograph actually shows isn’t at all soft: it is the hardest substance in the mammalian body—tooth enamel!

This exquisitely detailed image—a winner of the Federation of American Societies for Experimental Biology’s 2015 BioArt competition—was generated by Olivier Duverger and Maria Morasso of NIH’s National Institute of Arthritis and Musculoskeletal and Skin Diseases. Before placing a sample of mouse dental enamel under the microscope, they treated it briefly with acid in order to reveal how the tissue’s mineralized rods are interwoven in a manner that gives teeth both strength and flexibility.


Snapshots of Life: From Arabidopsis to Zinc

Posted on by Dr. Francis Collins

heat map of zZinc levels in an Arabidopsis thaliana plant leaf

Credit: Suzana Car, Maria Hindt, Tracy Punshon, and Mary Lou Guerinot, Dartmouth College, Hanover, NH

To most people, the plant Arabidopsis thaliana might seem like just another pesky weed. But for plant biologists, this member of the mustard green family is a valuable model for studying a wide array of biological processes—including the patterns of zinc acquisition shown so vividly in the Arabidopsis leaf above. Using synchrotron X-ray fluorescence technology, researchers found zinc concentrations varied considerably even within a single leaf; the lowest levels are marked in blue, next lowest in green, medium in red, and highest in white, concentrated at the base of tiny hairs (trichomes) that extend from the leaf’s surface.

A winner in the Federation of American Societies for Experimental Biology’s 2015 BioArt competition, this micrograph stems from work being conducted by Suzana Car and colleagues in the NIH-funded lab of Mary Lou Guerinot at Dartmouth College, Hanover, NH. The researchers are still trying to figure out exactly what zinc is doing at the various locations within Arabidopsis, as well as whether zinc concentrations are constant or variable. What is well known is that zinc is an essential micronutrient for human health, with more than 300 enzymes dependent on this mineral to catalyze chemical reactions within our bodies.