expansion microscopy
An Indisposable Idea from a Disposable Diaper
Posted on by Dr. Francis Collins

Using a screwdriver on the tiny microcircuits arrayed inside a computer hard drive can be a real eye strain. Even more challenging is building the microcircuits or other electronic components at the nanoscale, one-billionth of a meter or less.
That’s why researchers are always on the lookout for new tools to help them work on such a minute scale. But some of these incredibly tiny tools and scaffolds can derive from very unexpected sources.
As published in the journal Science, an NIH-funded team has developed a technique called implosion fabrication to build impressively small and intricate components on the nanoscale [1]. Its secret ingredient: water-swollen gels that you’d find in a baby’s disposable diaper.
A baby’s disposable diaper? If that sounds familiar, my blog highlighted a related technique called expansion microscopy a few years ago that uses water-swollen gels that are generated from a compound used in diapers called sodium polyacrylate.
The previously-reported microscopy technique, from the lab of Edward Boyden, Massachusetts Institute of Technology, Cambridge, embeds biological samples in a fine web of sodium polyacrylate. When water is added, the gel expands, blowing up the specimen to 100 times its original size. This groundbreaking technique, called expansion microscopy, has enabled labs around the world to use conventional microscopes for high-resolution, nanoscale imaging.
In the latest work, Boyden’s team, including co-first authors Daniel Oran and Samuel Rodriques, asked a simple question: What would happen if they applied the sample preparation technique used for expansion microscopy—only in reverse?
To find out, Boyden’s team created millimeter-sized blocks of the super-absorbent sodium polyacrylate diaper compound. After using a nifty trick for attaching molecular anchors in a 3D pattern, they dehydrated the gel and voila! The structures imploded and shrank down to one-thousandth their original size, while holding their 3D shape.
During the process, they can add to the anchors a range of functional molecules or elements. These include DNA, nanoparticles, semiconductors, or almost anything that’s needed.
While more work is needed to perfect the new technique, the researchers have already shown it can create objects one cubic millimeter in size, engineered to include intricate details down to about 50 nanometers. For comparison, a virus is about 30 to 50 nanometers.
These latest findings come as a reminder that advances in biomedicine often lead in wonderful and unexpected new directions. Out of the NIH-funded efforts related to The Brain Research through Advancing Innovative Neurotechnologies® (BRAIN) Initiative, members of the Boyden Lab wanted to see the brain better using basic microscopes. Now, we have a widely-applicable promising new approach to nanofabrication.
Reference:
[1] 3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds. Oran D, Rodriques SG, Gao R, Asano S, Skylar-Scott MA, Chen F, Tillberg PW, Marblestone AH, Boyden ES. Science. 2018 Dec 14;362(6420):1281-1285.
Links:
Size of the Nanoscale (Nano.gov)
Synthetic Neurobiology Group, Ed Boyden (MIT, Cambridge, MA)
The Brain Research through Advancing Innovative Neurotechnologies® (BRAIN) Initiative (NIH)
NIH Support: Common Fund; National Institute of Mental Health; National Institute of Biomedical Imaging and Bioengineering; National Human Genome Research Institute; National Institute on Drug Abuse; National Institute of Neurological Disorders and Stroke
Mammalian Brain Like You’ve Never Seen It Before
Posted on by Dr. Francis Collins
Credit: Gao et. al, Science
Researchers are making amazing progress in developing new imaging approaches. And they are now using one of their latest creations, called ExLLSM, to provide us with jaw-dropping views of a wide range of biological systems, including the incredibly complex neural networks within the mammalian brain.
In this video, ExLLSM takes us on a super-resolution, 3D voyage through a tiny sample (0.0030 inches thick) from the part of the mouse brain that processes sensation, the primary somatosensory cortex. The video zooms in and out of densely packed pyramidal neurons (large yellow cell bodies), each of which has about 7,000 synapses, or connections. You can also see presynapses (cyan), the part of the neuron that sends chemical signals; and postsynapes (magenta), the part of the neuron that receives chemical signals.
At 1:45, the video zooms in on dendritic spines, which are mushroom-like nubs on the neuronal branches (yellow). These structures, located on the tips of dendrites, receive incoming signals that are turned into electrical impulses. While dendritic spines have been imaged in black and white with electron microscopy, they’ve never been presented before on such a vast, colorful scale.
The video comes from a paper, published recently in the journal Science [1], from the labs of Ed Boyden, Massachusetts Institute of Technology, Cambridge, and the Nobel Prize-winning Eric Betzig, Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA. Like many collaborations, this one comes with a little story.
Four years ago, the Boyden lab developed expansion microscopy (ExM). The technique involves infusing cells with a hydrogel, made from a chemical used in disposable diapers. The hydrogel expands molecules within the cell away from each other, usually by about 4.5 times, but still locks them into place for remarkable imaging clarity. It makes structures visible by light microscopy that are normally below the resolution limit.
Though the expansion technique has worked well with a small number of cells under a standard light microscope, it hasn’t been as successful—until now—at imaging thicker tissue samples. That’s because thicker tissue is harder to illuminate, and flooding the specimen with light often bleaches out the fluorescent markers that scientists use to label proteins. The signal just fades away.
For Boyden, that was a problem that needed to be solved. Because his lab’s goal is to trace the inner workings of the brain in unprecedented detail, Boyden wants to image entire neural circuits in relatively thick swaths of tissue, not just look at individual cells in isolation.
After some discussion, Boyden’s team concluded that the best solution might be to swap out the light source for the standard microscope with a relatively new imaging tool developed in the Betzig lab. It’s called lattice light-sheet microscopy (LLSM), and the tool generates extremely thin sheets of light that illuminate tissue only in a very tightly defined plane, dramatically reducing light-related bleaching of fluorescent markers in the tissue sample. This allows LLSM to extend its range of image acquisition and quickly deliver stunningly vivid pictures.
Telephone calls were made, and the Betzig lab soon welcomed Ruixuan Gao, Shoh Asano, and colleagues from the Boyden lab to try their hand at combining the two techniques. As the video above shows, ExLLSM has proved to be a perfect technological match. In addition to the movie above, the team has used ExLLSM to provide unprecedented views of a range of samples—from human kidney to neuron bundles in the brain of the fruit fly.
Not only is ExLLSM super-resolution, it’s also super-fast. In fact, the team imaged the entire fruit fly brain in 2 1/2 days—an effort that would take years using an electron microscope.
ExLLSM will likely never supplant the power of electron microscopy or standard fluorescent light microscopy. Still, this new combo imaging approach shows much promise as a complementary tool for biological exploration. The more innovative imaging approaches that researchers have in their toolbox, the better for our ongoing efforts to unlock the mysteries of the brain and other complex biological systems. And yes, those systems are all complex. This is life we’re talking about!
Reference:
[1] Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Gao R, Asano SM, Upadhyayula S, Pisarev I, Milkie DE, Liu TL, Singh V, Graves A, Huynh GH, Zhao Y, Bogovic J, Colonell J, Ott CM, Zugates C, Tappan S, Rodriguez A, Mosaliganti KR, Sheu SH, Pasolli HA, Pang S, Xu CS, Megason SG, Hess H, Lippincott-Schwartz J, Hantman A, Rubin GM, Kirchhausen T, Saalfeld S, Aso Y, Boyden ES, Betzig E. Science. 2019 Jan 18;363(6424).
Links:
Video: Expansion Microscopy Explained (YouTube)
Video: Lattice Light-Sheet Microscopy (YouTube)
How to Rapidly Image Entire Brains at Nanoscale Resolution, Howard Hughes Medical Institute, January 17, 2019.
Synthetic Neurobiology Group (Massachusetts Institute of Technology, Cambridge)
Eric Betzig (Janelia Reseach Campus, Ashburn, VA)
NIH Support: National Institute of Neurological Disorders and Stroke; National Human Genome Research Institute; National Institute on Drug Abuse; National Institute of Mental Health; National Institute of Biomedical Imaging and Bioengineering
Diaper Compound Brings Change to Cell Microscopy
Posted on by Dr. Francis Collins

Caption: Mouse brain tissue as viewed by traditional microscopy (left) and expansion microscopy (right), which makes it possible to visualize individual synapses (example in white box). In both views, green indicates neurons; blue, pre-synaptic proteins; and red, post-synaptic proteins.
Credit: Ed Boyden, Fei Chen, Paul Tillberg, MIT
Light microscopy has been a mainstay of neuroscience and many areas of biology for more than a century. But the resolution limit of light, based on immutable physical principles, has kept the fine details of many structures out of view. Scientists can’t change the laws of physics—but NIH-supported researchers recently devised a highly creative way to see images that were previously out of reach, by expanding the contents of tissue sections up to five times their normal size, while maintaining the anatomic arrangements. The new approach takes advantage of a compound used in—get this—disposable diapers!
By harnessing the super-absorbent properties of sodium polyacrylate, a polymer commonly used in diapers, a team from the Massachusetts Institute of Technology (MIT) developed a new technique that makes it possible for conventional microscopes to produce super high-resolution images of brain cells. The name of the new technique? Expansion microscopy.