elderly
Using Science To Solve Oral Health Inequities
Posted on by Rena D'Souza, D.D.S., M.S., Ph.D., National Institute of Dental and Craniofacial Research

At NIH, we have a front row seat to remarkable advances in science and technology that help Americans live longer, healthier lives. By studying the role that the mouth and saliva can play in the transmission and prevention of disease, the National Institute of Dental and Craniofacial Research (NIDCR) contributed to our understanding of infectious agents like the coronavirus SARS-CoV-2, the cause of COVID-19. While these and other NIH-supported advances undoubtedly can improve our nation’s health as a whole, not everyone enjoys the benefits equally—or at all. As a result, people’s health, including their oral health, suffers.
That’s a major takeaway from Oral Health in America: Advances and Challenges, a report that NIDCR recently released on the status of the nation’s oral health over the last 20 years. The report shows that oral health has improved in some ways, but people from marginalized groups —such as those experiencing poverty, people from racial and ethnic minority groups, the frail elderly, and immigrants—shoulder an unequal burden of oral disease.
At NIDCR, we are taking the lessons learned from the Oral Health in America report and using them to inform our research. It will help us to discover ways to eliminate these oral health differences, or disparities, so that everyone can enjoy the benefits of good oral health.
Why does oral health matter? It is essential for our overall health, well-being, and productivity. Untreated oral diseases, such as tooth decay and gum disease, can cause infections, pain, and tooth loss, which affect the ability to chew, swallow, eat a balanced diet, speak, smile, and go to school and work.
Treatments to fix these problems are expensive, so people of low socioeconomic means are less likely to receive quality care in a timely manner. Importantly, untreated gum disease is associated with serous systemic conditions such as diabetes, heart disease, and Alzheimer’s disease.
A person experiencing poverty also may be at increased risk for mental illness. That, in turn, can make it hard to practice oral hygiene, such as toothbrushing and flossing, or to maintain a relationship with a dental provider. Mental illnesses and substance use disorders often go hand-in-hand, and overuse of opioids, alcohol, and tobacco products also can raise the risk for tooth decay, gum disease, and oral cancers. Untreated dental diseases in this setting can cause pain, sometimes leading to increased substance use as a means of self-medication.
Research to understand better the connections between mental health, addiction, and oral health, particularly as they relate to health disparities, can help us develop more effective ways to treat patients. It also will help us prepare health providers, including dentists, to deliver the right kind of care to patients.
Another area that is ripe for investigation is to find ways to make it easier for people to get dental care, especially those from marginalized or rural communities. For example, the COVID-19 pandemic spurred more dentists to use teledentistry, where practitioners meet with patients remotely as a way to provide certain aspects of care, such as consultations, oral health screenings, treatment planning, and education.
Teledentistry holds promise as a cost-saving approach to connect dentists to people living in regions that may have a shortage of dentists. Some evidence suggests that providing access to oral health care outside of dental clinics—such as in schools, primary care offices, and community centers—has helped reduce oral health disparities in children. We need additional research to find out if this type of approach also might reduce disparities in adults.
These are just some of the opportunities highlighted in the Oral Health in America report that will inform NIDCR’s research in the coming years. Just as science, innovation, and new technologies have helped solve some of the most challenging health problems of our time, so too can they lead us to solutions for tackling oral health disparities. Our job will not be done until we can improve oral and overall health for everyone across America.
Links:
Oral Health in America: Advances and Challenges (National Institute of Dental and Craniofacial Research/NIH)
Oral Health in America Editors Issue Guidance for Improving Oral Health for All (NIDCR)
NIH, HHS Leaders Call for Research and Policy Changes To Address Oral Health Inequities (NIDCR)
NIH/NIDCR Releases Oral Health in America: Advances and Challenges (NIDCR)
Note: Acting NIH Director Lawrence Tabak has asked the heads of NIH’s Institutes and Centers (ICs) to contribute occasional guest posts to the blog to highlight some of the interesting science that they support and conduct. This is the 11th in the series of NIH IC guest posts that will run until a new permanent NIH director is in place.
Israeli Study Offers First Real-World Glimpse of COVID-19 Vaccines in Action
Posted on by Dr. Francis Collins

There are many reasons to be excited about the three COVID-19 vaccines that are now getting into arms across the United States. At the top of the list is their extremely high level of safety and protection against SARS-CoV-2, the coronavirus that causes COVID-19. Of course, those data come from clinical trials that were rigorously conducted under optimal research conditions. One might wonder how well those impressive clinical trial results will translate to the real world.
A new study published in the New England Journal of Medicine [1] offers an early answer for the Pfizer/BioNTech vaccine. The Pfizer product is an mRNA vaccine that was found in a large clinical trial to be up to 95 percent effective in preventing COVID-19, leading to its Emergency Use Authorization last December.
The new data, which come from Israel, are really encouraging. Based on a detailed analysis of nearly 600,000 people vaccinated in that nation, a research team led by Ran Balicer, The Clalit Research Institute, Tel Aviv, found that the risk of symptomatic COVID-19 infection dropped by 94 percent a week after individuals had received both doses of the Pfizer vaccine. That’s essentially the same very high level of protection that was seen in the data gathered in the earlier U.S. clinical trial.
The study also found that just a single shot of the two-dose vaccine led to a 57 percent drop in the incidence of symptomatic COVID-19 infections and a 62 percent decline in the risk of severe illness after two to three weeks. Note, however, that the protection clearly got better after folks received the second dose. While it’s too soon to say how many lives were saved in Israel thanks to full vaccination, the early data not surprisingly suggest a substantial reduction in mortality.
Israel, which is about as large as New Jersey with a population of around 9 million, currently has the world’s highest COVID-19 vaccination rate. In addition to its relatively small size, Israel also has a national health system and one of the world’s largest integrated health record databases, making it a natural choice to see how well one of the new vaccines was working in the real world.
The study took place from December 20, 2020, the start of Israel’s first vaccination drive, through February 1, 2021. This also coincided with Israel’s third and largest wave of COVID-19 infections and illness. During this same period, the B.1.1.7 variant, which was first detected in the United Kingdom, gradually became Israel’s dominant strain. That’s notable because the U.K. variant spreads from person-to-person more readily and may be associated with an increased risk of death compared with other variants [2].
Balicer and his colleagues reviewed data on 596,618 fully vaccinated individuals, ages 16 and older. A little less than one third—about 170,000—of the people studied were over age 60. To see how well the vaccine worked, the researchers carefully matched each of the vaccinated individuals in the study to an unvaccinated person with similar demographics as well as risks of infection, severe illness, and other important health attributes.
The results showed that the vaccine works remarkably well. In fact, the researchers determined that the Pfizer/BioNTech vaccine is similarly effective—94 percent to 96 percent—across adults in different age groups. It also appears that the vaccine works about equally well for individuals age 70 and older as it does for younger people.
So far, more than 92 million total vaccine doses have been administered in the U.S. With the Janssen COVID-19 vaccine (also called the Johnson & Johnson vaccine) now coming online, that number will rise even faster. For those of you who haven’t had the opportunity just yet, these latest findings should come as added encouragement to roll up your sleeve for any one of the authorized vaccines as soon as your invitation arrives.
References:
[1] BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, Hernán MA, Lipsitch M, Reis B, Balicer RD. N Engl J Med. 2021 Feb 24.
[2] Emerging SARS-CoV-2 Variants. Centers for Disease Control and Prevention.
Links:
COVID-19 Research (NIH)
Clalit Research Institute (Tel Aviv, Israel)
Ran Balicer (Clalit Research Institute)
COVID-19 Vaccine Appears Well-Tolerated and Effective in Developing Antibodies in Small Study of Older Adults
Posted on by Dr. Francis Collins

It’s been truly breathtaking to watch the progress being made on a daily basis to develop safe and effective vaccines for SARS-CoV-2, the novel coronavirus that causes COVID-19. Indeed, months sooner than has ever been possible for a newly emerging infection, several promising vaccines are already working their way through Phase 3 studies, the final stage of clinical evaluation. I remain optimistic that we will have one or more vaccines that prove to be safe and effective by January 2021.
But, as encouraging as the early data have been, uncertainty has remained over whether vaccines that appear safe and effective in developing antibodies in younger adults will work as well in older people, too. It’s a critical issue given that older individuals also are at greater risk for severe or life-threatening illness if they do get sick from COVID-19.
So, I’m pleased to highlight some recent findings, published in the New England Journal of Medicine [1], from an early Phase 1 clinical trial that was expanded to include 40 adults over age 55. While we eagerly await the results of ongoing and larger studies, these early data suggest that an innovative COVID-19 vaccine co-developed by NIH’s Vaccine Research Center (VRC), in partnership with Moderna Inc., Cambridge, MA, is both well tolerated and effective in generating a strong immune response when given to adults of any age.
The centerpiece of the vaccine in question, known as mRNA-1273, is a small, non-infectious snippet of messenger RNA (mRNA). When this mRNA is injected into muscle, a person’s own body will begin to make the key viral spike protein. As the immune system detects this spike protein, it spurs the production of antibodies that may help to fend off the novel SARS-CoV-2.
Earlier findings from the NIH-supported phase 1 human clinical trial found mRNA-1273 was safe and effective in generating a vigorous immune response in people ages 18 to 55, when delivered in two injections about a month apart. Based on those findings, a large Phase 3 clinical trial is currently enrolling 30,000 volunteers, with results expected in the next few weeks [2]. But, given that immune response to many other vaccines tends to grow weaker with age, how well would this new COVID-19 vaccine work for older individuals?
To find out, a team at Kaiser Permanente Washington Health Research Institute, Seattle, and Emory University School of Medicine, Atlanta, expanded the initial Phase 1 trial to include 20 healthy volunteers ages 56 to 70 and another 20 healthy volunteers ages 71 and older. Ten volunteers in each of the two older age groups received a lower dose of the vaccine (25 micrograms) in two injections given about a month apart. The other 10 in each age group received a higher dose (100 micrograms), given on the same schedule.
Here’s what they found:
• No volunteers suffered serious adverse events. The most common adverse events were mild-to-moderate in severity and included headache, fatigue, muscle aches, chills and pain at the injection site. Those symptoms occurred most often after the second dose and in individuals receiving the higher dose of 100 micrograms.
• Volunteers showed a rapid production of protective antibodies against the spike protein following immunization. After the second injection, all participants showed a strong immune response, with production of robust binding and neutralizing antibodies against SARS-CoV-2.
• The higher dose of 100 micrograms safely produced a stronger immune response compared to the lower dose, supporting its use in larger clinical studies.
• Most importantly, the immune response observed in these older individuals was comparable to that seen previously in younger adults.
The researchers will continue to follow the volunteer trial participants of all ages for about a year to monitor the vaccine’s longer-term effects. But these findings provided support for continued testing of this promising vaccine in older adults in the ongoing Phase 3 clinical trial.
There are currently four SARS-CoV-2 vaccines in phase 3 clinical trials in the United States (though two are currently on hold). Trials of two more vaccines are expected start in the next month or two.
It is not known whether all of these vaccines will have the same vigorous immune response in older individuals that has been demonstrated for this one. But if more than one of these vaccines turns out to be safe and effective, it will be important to know about the response in various populations, so that distribution to high-risk groups can be planned accordingly.
References:
[1] Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene M, Chappell JD, Denison MR, Stevens LJ, Pruijssers AJ, McDermott AB, Flach B, Lin BC, Doria-Rose NA, O’Dell S, Schmidt SD, Corbett KS, Swanson PA 2nd, Padilla M, Neuzil KM, Bennett H, Leav B, Makowski M, Albert J, Cross K, Edara VV, Floyd K, Suthar MS, Martinez DR, Baric R, Buchanan W, Luke CJ, Phadke VK, Rostad CA, Ledgerwood JE, Graham BS, Beigel JH; mRNA-1273 Study Group. N Engl J Med. 2020 Sep 29.
[2] “Phase 3 clinical trial of investigational vaccine for COVID-19 begins.” National Institutes of Heath. July 27, 2020
Links:
Coronavirus (COVID-19) (NIH)
COVID-19 Prevention Network (National Institute of Allergy and Infectious Diseases/NIH)
Dale and Betty Bumpers Vaccine Research Center (National Institute of Allergy and Infectious Diseases/NIH)
Moderna, Inc. (Cambridge, MA)
Safety and Immunogenicity Study of 2019-nCoV Vaccine (mRNA-1273) for Prophylaxis of SARS-CoV-2 Infection (COVID-19) (ClinicalTrials.gov)
NIH Support: National Institute of Allergy and Infectious Diseases
New Evidence Suggests Aging Brains Continue to Make New Neurons
Posted on by Dr. Francis Collins

Caption: Mammalian hippocampal tissue. Immunofluorescence microscopy showing neurons (blue) interacting with neural astrocytes (red) and oligodendrocytes (green).
Credit: Jonathan Cohen, Fields Lab, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH
There’s been considerable debate about whether the human brain has the capacity to make new neurons into adulthood. Now, a recently published study offers some compelling new evidence that’s the case. In fact, the latest findings suggest that a healthy person in his or her seventies may have about as many young neurons in a portion of the brain essential for learning and memory as a teenager does.
As reported in the journal Cell Stem Cell, researchers examined the brains of healthy people, aged 14 to 79, and found similar numbers of young neurons throughout adulthood [1]. Those young neurons persisted in older brains that showed other signs of decline, including a reduced ability to produce new blood vessels and form new neural connections. The researchers also found a smaller reserve of quiescent, or inactive, neural stem cells in a brain area known to support cognitive-emotional resilience, the ability to cope with and bounce back from stressful circumstances.
While more study is clearly needed, the findings suggest healthy elderly people may have more cognitive reserve than is commonly believed. However, the findings may also help to explain why even perfectly healthy older people often find it difficult to face new challenges, such as travel or even shopping at a different grocery store, that wouldn’t have fazed them earlier in life.