Skip to main content

doxorubicin

Caught on Video: Cancer Cells in Act of Cannibalism

Posted on by Dr. Francis Collins

Tumors rely on a variety of tricks to grow, spread, and resist our best attempts to destroy them. Now comes word of yet another of cancer’s surprising stunts: when chemotherapy treatment hits hard, some cancer cells survive by cannibalizing other cancer cells.

Researchers recently caught this ghoulish behavior on video. In what, during this Halloween season, might look a little bit like The Blob, you can see a down-for-the-count breast cancer cell (green), treated earlier with the chemotherapy drug doxorubicin, gobbling up a neighboring cancer cell (red). The surviving cell delivers its meal to internal compartments called lysosomes, which digest it in a last-ditch effort to get some nourishment and keep going despite what should have been a lethal dose of a cancer drug.

Crystal Tonnessen-Murray, a postdoctoral researcher in the lab of James Jackson, Tulane University School of Medicine, New Orleans, captured these dramatic interactions using time-lapse and confocal microscopy. When Tonnessen-Murray saw the action, she almost couldn’t believe her eyes. Tumor cells eating tumor cells wasn’t something that she’d learned about in school.

As the NIH-funded team described in the Journal of Cell Biology, these chemotherapy-treated breast cancer cells were not only cannibalizing their neighbors, they were doing it with remarkable frequency [1]. But why?

A possible explanation is that some cancer cells resist chemotherapy by going dormant and not dividing. The new study suggests that while in this dormant state, cannibalism is one way that tumor cells can keep going.

The study also found that these acts of cancer cell cannibalism depend on genetic programs closely resembling those of immune cells called macrophages. These scavenging cells perform their important protective roles by gobbling up invading bacteria, viruses, and other infectious microbes. Drug-resistant breast cancer cells have apparently co-opted similar programs in response to chemotherapy but, in this case, to eat their own neighbors.

Tonnessen-Murray’s team confirmed that cannibalizing cancer cells have a survival advantage. The findings suggest that treatments designed to block the cells’ cannibalistic tendencies might hold promise as a new way to treat otherwise hard-to-treat cancers. That’s a possibility the researchers are now exploring, although they report that stopping the cells from this dramatic survival act remains difficult.

Reference:

[1] Chemotherapy-induced senescent cancer cells engulf other cells to enhance their survival. Tonnessen-Murray CA, Frey WD, Rao SG, Shahbandi A, Ungerleider NA, Olayiwola JO, Murray LB, Vinson BT, Chrisey DB, Lord CJ, Jackson JG. J Cell Biol. 2019 Sep 17.

Links:

Breast Cancer (National Cancer Institute/NIH)

James Jackson (Tulane University School of Medicine, New Orleans)

NIH Support: National Institute of General Medical Sciences


Precision Oncology: Nanoparticles Target Bone Cancers in Dogs

Posted on by Dr. Francis Collins

Timothy Fan and his dog Ember
Caption: Veterinary researcher Timothy Fan with his healthy family pet Ember.
Credit: L. Brian Stauffer

Many people share their homes with their pet dogs. Spending years under the same roof with the same environmental exposures, people and dogs have something else in common that sometimes gets overlooked. They can share some of the same diseases, such as diabetes and cancer. By studying these diseases in dogs, researchers can learn not only to improve care for people but for their canine friends as well.

As a case in point, an NIH-funded team of researchers recently tested a new method of delivering chemotherapy drugs for osteosarcoma, a bone cancer that affects dogs and people, typically teenagers and older adults. Their studies in dogs undergoing treatment for osteosarcoma suggest that specially engineered, bone-seeking nanoparticles might safely deliver anti-cancer drugs precisely to the places where they are most needed. These early findings come as encouraging news for the targeted treatment of inoperable bone cancers and other malignancies that spread to bone.