Skip to main content

cilia

A Close-up of COVID-19 in Lung Cells

Posted on by Dr. Francis Collins

SARS-CoV-2 infected lung cells
Credit: Ehre Lab, UNC School of Medicine

If you or a loved one have come down with SARS-CoV-2, the coronavirus responsible for COVID-19, you know it often takes hold in the respiratory system. This image offers a striking example of exactly what happens to cells in the human airway when this coronavirus infects them.

This colorized scanning electron microscope (SEM) image shows SARS-CoV-2-infected human lung cells (purple) covered in hair-like cilia (blue). Those cilia line the inner surface of the airways and help to clear mucus (yellow-green) containing dust and other debris from the lungs. Emerging from the surface of those infected airway cells are many thousands of coronavirus particles (red).

This dramatic image, published recently in the New England Journal of Medicine, comes from the lab of pediatric pulmonologist Camille Ehre, University of North Carolina at Chapel Hill. Ehre and team study mucus and how its properties change in cystic fibrosis, chronic obstructive pulmonary disease (COPD), and various other conditions that affect the lungs. These days, they’re also focusing their attention on SARS-CoV-2 and potentially new ways to block viral entry into cells of the human airway.

As part of that effort, she and her colleagues captured this snapshot of SARS-CoV-2 viruses exiting from lung cells in a lab dish. They first cultured cells from the lining of a human airway, then inoculated them with the virus. Ninety-six hours later, this is what they saw in greyscale. The vivid colors were added later by UNC medical student Cameron Morrison.

The image illustrates the astoundingly large number of viral particles that can be produced and released from infected human cells. Ehre notes that in a lab dish containing about a million human cells, they’ve witnessed the virus explode from about 1,000 particles to about 10 million in just a couple of days.

The dramatic increase in viral particles helps to explain how COVID-19 spreads so easily from the lungs to other parts of the body and—all too often—on to other individuals, especially in crowded, indoor places where people aren’t able to keep their distance. Hopefully, images like this one will help to inspire more of us this winter to avoid the crowds (especially indoors), wear masks, and wash our hands frequently.

Reference:

[1] SARS-CoV-2 infection of airway cells. Ehre C. NEJM. 2020 Sep 3;383(10):969.

Links:

Coronavirus (COVID-19) (NIH)

Camille Ehre (University of North Carolina, Chapel Hill)


Using Frogs to Tackle Kidney Problems

Posted on by Dr. Francis Collins

Cilia
Credit: Vanja Krneta-Stankic and Rachel K. Miller, McGovern Medical School, Houston

Many human cells are adorned with hair-like projections called cilia. Scientists now realize that these specialized structures play many important roles throughout the body, including directing or sensing various signals such as fluid flow. Their improper function has been linked to a wide range of health conditions, such as kidney disease, scoliosis, and obesity.

Studying cilia in people can be pretty challenging. It’s less tricky in a commonly used model organism: Xenopus laevis, or the African clawed frog. This image highlights a healthy patch of motile cilia (yellow) on embryonic skin cells (red) of Xenopus laevis. The cilia found in humans and all other vertebrates are built from essentially the same elongated structures known as microtubules. That’s why researchers can learn a lot about human cilia by studying frogs.


Scoliosis Traced to Problems in Spinal Fluid Flow

Posted on by Dr. Francis Collins

Zebra fish model for scoliosis study

Caption: Normal zebrafish (top left) and a normal skeleton (bottom left); zebrafish with scoliosis (top right) and an abnormal scoliotic skeleton (bottom right).
Credit: Grimes DT, Boswell CW, Morante NF, Henkelman RM.

Many of us may remember undergoing a simple screening test in school to look for abnormal curvatures of the spine. The condition known as adolescent idiopathic scoliosis (IS) affects 3 percent of children, typically showing up in the tween or early teen years when kids are growing rapidly. While scoliosis can occur due to physical defects in bones or muscles, more often the C- or S-shaped spinal curves develop for unknown reasons. Because the basic biological mechanisms of IS have been poorly understood, treatment to prevent further progression and potentially painful disfigurement has been limited to restrictive braces or corrective surgery.

Now, in work involving zebrafish models of IS, a team of NIH-funded researchers and their colleagues report a surprising discovery that suggests it may be possible to develop more precisely targeted therapeutics to reduce or even prevent scoliosis. The team’s experiments have, for the first time, shown that mutation of a gene associated with spinal curvature in both zebrafish and humans has its effect by altering the function of the tiny hair-like projections, known as cilia, that line the spinal cord. Without the cilia’s normal, beating movements, the fluid that bathes the brain and spinal cord doesn’t flow properly, and zebrafish develop abnormal spinal curves that look much like those seen in kids with scoliosis. However, when the researchers used genetic engineering to correct such mutations and thereby restore normal cilia function and flow of cerebral spinal fluid (CSF), the zebrafish did not develop spinal curvature.


Cool Videos: A Look Inside a Mouse’s Lung

Posted on by Dr. Francis Collins

Mouse Lung

If you have ever wondered what it is like to be an oxygen molecule inhaled through the lungs, here is your chance to find out! In this movie, we take a fantastic voyage through the slippery airways of the adult mouse lung.

We begin at the top in the main pipeline, called the bronchus, just below the trachea and wind through a system of increasingly narrow tubes. As you zoom through the airways, take note of the cilia (seen as goldish streaks); these tiny, hair-like structures move dust, germs, and mucus from smaller air passages to larger ones. Our quick trip concludes with a look into the alveoli — the air sacs where oxygen is delivered to red blood cells and carbon dioxide is removed and exhaled.