cancer imaging
3D Action Film Stars Cancer Cell as the Villain
Posted on by Dr. Francis Collins
For centuries, microscopes have brought to light the otherwise invisible world of the cell. But microscopes don’t typically visualize the dynamic world of the cell within a living system.
For various technical reasons, researchers have typically had to displace cells, fix them in position, mount them onto slides, and look through a microscope’s viewfinder to see the cells. It can be a little like trying to study life in the ocean by observing a fish cooped up in an 8-gallon tank.
Now, a team partially funded by NIH has developed a new hybrid imaging technology to produce amazing, live-action 3D movies of living cells in their more natural state. In this video, you’re looking at a human breast cancer cell (green) making its way through a blood vessel (purple) of a young zebrafish.
At first, the cancer cell rolls along rather freely. As the cell adheres more tightly to the blood vessel wall, that rolling motion slows to a crawl. Ultimately, the cancer cell finds a place to begin making its way across and through the blood vessel wall, where it can invade other tissues.
Tumor Scanner Promises Fast 3D Imaging of Biopsies
Posted on by Dr. Francis Collins

Caption: University of Washington team that developed new light-sheet microscope (center) includes (l-r) Jonathan Liu, Adam Glaser, Larry True, Nicholas Reder, and Ye Chen.
Credit: Mark Stone/University of Washington
After surgically removing a tumor from a cancer patient, doctors like to send off some of the tissue for evaluation by a pathologist to get a better idea of whether the margins are cancer free and to guide further treatment decisions. But for technical reasons, completing the pathology report can take days, much to the frustration of patients and their families. Sometimes the results even require an additional surgical procedure.
Now, NIH-funded researchers have developed a groundbreaking new microscope to help perform the pathology in minutes, not days. How’s that possible? The device works like a scanner for tissues, using a thin sheet of light to capture a series of thin cross sections within a tumor specimen without having to section it with a knife, as is done with conventional pathology. The rapidly acquired 2D “optical sections” are processed by a computer that assembles them into a high-resolution 3D image for immediate analysis.