Skip to main content

C. elegans

First Day in the Life of Nine Amazing Creatures

Posted on by

Credit: Tessa Montague, Harvard University, and Zuzka Vavrušová, University of California, San Francisco

Each summer for the last 125 years, students from around the country have traveled to the Marine Biological Laboratory (MBL), Woods Hole, MA, for an intensive course in embryology. While visiting this peaceful and scenic village on Cape Cod, they’re exposed to a dizzying array of organisms and state-of-the-art techniques to study their development.


A Tribute to Two Amazing Scientists

Posted on by

Sulston-Hawking

Caption: Sir John Sulston (left) and Stephen Hawking (right)
Credit: Jane Gitschier, PLoS; Paul Alers, NASA

Over the past couple of weeks, we’ve lost two legendary scientists who made major contributions to our world: Sir John Sulston and Stephen Hawking. Although they worked in very different areas of science—biology and physics—both have left us with an enduring legacy through their brilliant work that unlocked fundamental mysteries of life and the universe.

I had the privilege of working closely with John as part of the international Human Genome Project (HGP), a historic endeavor that successfully produced the first reference sequence of the human genetic blueprint nearly 15 years ago, in April 2003. As founding director of the Sanger Centre (now the Sanger Institute) in Cambridge, England, John oversaw the British contributions to this publicly funded effort. Throughout our many planning meetings and sometimes stormy weekly conference calls about progress of this intense and all-consuming enterprise, John stood out for his keen intellect and high ethical standards.


Creative Minds: The Worm Tissue-ome Teaches Developmental Biology for Us All

Posted on by

C. elegans

Caption: An adult Caenorhabditis elegans, 5 days
Credit: Coleen Murphy, Princeton University, Princeton, NJ

In the nearly 40 years since Nobel Prize-winning scientist Sydney Brenner proposed using a tiny, transparent soil worm called Caenorhabditis elegans as a model organism for biomedical research, C. elegans has become one of the most-studied organisms on the planet. Researchers have determined that C. elegans has exactly 959 cells, 302 of which are neurons. They have sequenced and annotated its genome, developed an impressive array of tools to study its DNA, and characterized the development of many of its tissues.

But what researchers still don’t know is exactly how all of these parts work together to coordinate this little worm’s response to changes in nutrition, environment, health status, and even the aging process. To learn more, 2015 NIH Director’s Pioneer Award winner Coleen Murphy of Princeton University, Princeton, NJ, has set out to analyze which genes are active, or transcribed, in each of the major tissues of adult C. elegans, building the framework for what’s been dubbed the C. elegans “tissue-ome.”


Snapshots of Life: A Kaleidoscope of Worms

Posted on by

C. elegans

Credit: Adam Brown and David Biron, University of Chicago

What might appear to be a view inside an unusual kaleidoscope is actually a laboratory plate full of ravenous roundworms (Caenorhabditis elegans) as seen through a microscope. Tens of thousands of worms (black), each about 1 millimeter in length at adulthood, are grazing on a field of bacteria beneath them. The yellow is a jelly-like growth medium called agar that feeds the bacteria, and the orange along the borders was added to enhance the sunburst effect.

The photo was snapped and stylized by NIH training grantee Adam Brown, a fourth-year Ph.D. student in the lab of David Biron at the University of Chicago. Brown uses C. elegans to study the neurotransmitter serotonin, a popular drug target in people receiving treatment for depression and other psychiatric disorders. This tiny, soil-dwelling worm is a go-to model organism for neuroscientists because of its relative simplicity, short life spans, genetic malleability, and complete cell-fate map. By manipulating the different components of the serotonin-signaling system in C. elegans, Brown and his colleagues hope to better understand the most basic circuitry in the central nervous system that underlies decision making, in this case choosing to feed or forage.


Snapshots of Life: The Dance of Development

Posted on by

Credit: Amanda L. Zacharias and John I. Murray, Perelman School of Medicine, University of Pennsylvania

This video may look like an aerial shot of a folk dance: first a lone dancer, then two, then four, until finally dozens upon dozens of twirling orbs pack the space in a frenzy of motion. But what you’re actually viewing is an action shot of one of biology’s most valuable models for studying development: the round worm, Caenorhabditis elegans (C. elegans).

Taking advantage of time-lapse technology, this video packs into 38 seconds the first 13 hours of this tiny worm’s life, showing its development from a single cell into the larval, or juvenile stage, with 558 cells. (If you are wondering why C. elegans doesn’t look very worm-like at the end of this video, it’s because the organism develops curled up inside a transparent shell—and after it breaks out of that shell, it squirms quickly away.)


Next Page