Skip to main content

breathing problems

Clinical Center Doctors Testing 3D-Printed Miniature Ventilator

Posted on by James K. Gilman, MD, NIH Clinical Center

Small plastic device next to a thumbdrive
Caption: A USB flash drive (front) next to the 3D-printed miniature ventilator (back). Credit: William Pritchard, Clinical Center, NIH

Here at the NIH Clinical Center, we are proud to be considered a world-renowned research hospital that provides hope through pioneering clinical research to improve human health. But what you may not know is that our doctors are constantly partnering with public and private sectors to come up with innovative technologies that will help to advance health outcomes.

I’m excited to bring to you a story that is perfect example of the ingenuity of our NIH doctors working with global strategic partners to create potentially life-saving technologies. This story begins during the COVID-19 pandemic with the global shortage of ventilators to help patients breathe. Hospitals had a profound need for inexpensive, easy-to-use, rapidly mass-produced resuscitation devices that could be quickly distributed in areas of critical need.

Through strategic partnerships, our Clinical Center doctors learned about and joined an international group of engineers, physicians, respiratory therapists, and patient advocates using their engineering skills to create a ventilator that was functional, affordable, and intuitive. After several iterations and bench testing, they devised a user-friendly ventilator.

Transparent plastic mini ventilator
Caption: The miniature ventilator connected to an oxygen line (asterisk) and the breathing tube to the patient (crosshatch). The exhaust (dagger) is recessed to prevent accidental blockage. Credit: William Pritchard, Clinical Center, NIH

Then, with the assistance of 3D-printing technology, they improved the original design and did something pretty incredible: the team created the smallest single-patient ventilator seen to date. The device is just 2.4 centimeters (about 1 inch) in diameter with a length of 7.4 centimeters (about 3 inches).

A typical ventilator in a hospital obviously is much larger and has a bellows system. It fills with oxygen and then forces it into the lungs followed by the patient passively exhaling. These systems have multiple moving parts, valves, hoses, and electronic or mechanical controls to manage all aspects of the oxygen flow into the lungs.

But our miniature, 3D-printed ventilator is single use, disposable, and has no moving parts. It’s based on principles of fluidics to ventilate patients by automatically oscillating between forced inspiration and assisted expiration as airway pressure changes. It requires only a continuous supply of pressurized oxygen.

The possibilities of this 3D-printed miniature ventilator are broad. The ventilators could be easily used in emergency transport, potentially treating battlefield casualties or responding to disasters and mass casualty events like earthquakes.

While refining a concept is important, the key is converting it to actual use, which our doctors are doing admirably in their preclinical and clinical studies. NIH’s William Pritchard, Andrew Mannes, Brad Wood, John Karanian, Ivane Bakhutashvili, Matthew Starost, David Eckstein, and medical student Sheridan Reed studied and have already tested the ventilators in swine with acute lung injury, a common severe outcome in a number of respiratory threats including COVID-19.

In the study, the doctors tested three versions of the device built to correspond to mild, moderate, and severe lung injury. The respirators provided adequate support for moderate and mild lung injuries, and the doctors recall how amazing it was initially to witness a 190-pound swine ventilated by this miniature ventilator.

The doctors believe that the 3D-printed miniature ventilator is a potential “game changer” from start to finish since it is lifesaving, small, simple to use, can be easily and inexpensively printed and stored, and does not require additional maintenance. They recently published their preclinical trial results in the journal Science Translational Medicine [1].

The NIH team is preparing to initiate first-in-human trials here at the Clinical Center in the coming months. Perhaps, in the not-too-distant future, a device designed to help people breathe could fit into your pocket next to your phone and keys.

Reference:

[1] In-line miniature 3D-printed pressure-cycled ventilator maintains respiratory homeostasis in swine with induced acute pulmonary injury. Pritchard WF, Karanian JW, Jung C, Bakhutashvili I, Reed SL, Starost MF, Froelke BR, Barnes TR, Stevenson D, Mendoza A, Eckstein DJ, Wood BJ, Walsh BK, Mannes AJ. Sci Transl Med. 2022 Oct 12;14(666):eabm8351.

Links:

Clinical Center (NIH)

Andrew Mannes (Clinical Center)

Bradford Wood (Clinical Center)

David Eckstein (Clinical Center)

Note: Dr. Lawrence Tabak, who performs the duties of the NIH Director, has asked the heads of NIH’s Institutes and Centers (ICs) to contribute occasional guest posts to the blog to highlight some of the interesting science that they support and conduct. This is the 21st in the series of NIH IC guest posts that will run until a new permanent NIH director is in place.


Study Finds 1 in 10 Healthcare Workers with Mild COVID Have Lasting Symptoms

Posted on by Dr. Francis Collins

People showing symtoms of anosmia, fatigue, and ageusia
Credit: Getty Images

It’s become increasingly clear that even healthy people with mild cases of COVID-19 can battle a constellation of symptoms that worsen over time—or which sometimes disappear only to come right back. These symptoms are part of what’s called “Long COVID Syndrome.”

Now, a new study of relatively young, healthy adult healthcare workers in Sweden adds needed information on the frequency of this Long COVID Syndrome. Published in the journal JAMA, the study found that just over 1 in 10 healthcare workers who had what at first seemed to be a relatively mild bout of COVID-19 were still coping with at least one moderate to severe symptom eight months later [1]. Those symptoms—most commonly including loss of smell and taste, fatigue, and breathing problems—also negatively affected the work and/or personal lives of these individuals.

These latest findings come from the COVID-19 Biomarker and Immunity (COMMUNITY) study, led by Charlotte Thålin, Danderyd Hospital and Karolinska Institutet, Stockholm. The study, launched a year ago, enlisted 2,149 hospital employees to learn more about immunity to SARS-CoV-2, the coronavirus that causes COVID-19.

After collecting blood samples from participants, the researchers found that about 20 percent already had antibodies to SARS-CoV-2, evidence of a past infection. Thålin and team continued collecting blood samples every four months from all participants, who also completed questionnaires about their wellbeing.

Intrigued by recent reports in the medical literature that many people hospitalized with COVID-19 can have persistent symptoms for months after their release, the researchers decided to take a closer look in their COMMUNITY cohort. They did so last January during their third round of follow up.

This group included 323 mostly female healthcare workers, median age of 43. The researchers compared symptoms in this group following mild COVID-19 to the 1,072 mostly female healthcare workers in the study (median age 47 years) who hadn’t had COVID-19. They wanted to find out if those with mild COVID-19 coped with more and longer-lasting symptoms of feeling unwell than would be expected in an otherwise relatively healthy group of people. These symptoms included familiar things such as fatigue, muscle pain, trouble sleeping, and problems breathing.

Their findings show that 26 percent of those who had mild COVID-19 reported at least one moderate to severe symptom that lasted more than two months. That’s compared to 9 percent of participants without COVID-19. What’s more, 11 percent of the individuals with mild COVID-19 had at least one debilitating symptom that lasted for at least eight months. In the group without COVID-19, any symptoms of feeling unwell resolved relatively quickly.

The most common symptoms in the COVID-19 group were loss of taste or smell, fatigue, and breathing problems. In this group, there was no apparent increase in other symptoms that have been associated with COVID-19, including “brain fog,” problems with memory or attention, heart palpitations, or muscle and joint pain.

The researchers have noted that the Swedish healthcare workers represent a relatively young and healthy group of working individuals. Yet, many of them continued to suffer from lasting symptoms related to mild COVID-19. It’s a reminder that COVID-19 can and, in fact, is having a devastating impact on the lives and livelihoods of adults who are at low risk for developing severe and life-threatening COVID-19. If we needed one more argument for getting young people vaccinated, this is it.

At NIH, efforts have been underway for some time to identify the causes of Long COVID. In fact, a virtual workshop was held last winter with more than 1,200 participants to discuss what’s known and to fill in key gaps in our knowledge of Long COVID syndrome, which is clinically known as post-acute sequelae of COVID-19 (PASC). Recently, a workshop summary was published [2]. As workshops and studies like this one from Sweden help to define the problem, the hope is to learn one day how to treat or prevent this terrible condition. The NIH is now investing more than $1 billion in seeking those answers.

References:

[1] Symptoms and functional impairment assessed 8 Months after mild COVID-19 among health care workers. Havervall S, Rosell A, Phillipson M, Mangsbo SM, Nilsson P, Hober S, Thålin C. JAMA. 2021 Apr 7.

[2] Toward understanding COVID-19 recovery: National Institutes of Health workshop on postacute COVID-19. Lerner A, et al. Ann Intern Med, 2021 March 30.

Links:

COVID-19 Research (NIH)

Charlotte Thålin (Karolinska Institutet, Stockholm, Sweden)