Skip to main content

Brazil

Zika Virus: An Emerging Health Threat

Posted on by

Credit: Kraemer et al. eLife 2015;4:e08347

For decades, the mosquito-transmitted Zika virus was mainly seen in equatorial regions of Africa and Asia, where it caused a mild, flu-like illness and rash in some people. About 10 years ago, the picture began to expand with the appearance of Zika outbreaks in the Pacific islands. Then, last spring, Zika popped up in South America, where it has so far infected more than 1 million Brazilians and been tentatively linked to a steep increase in the number of babies born with microcephaly, a very serious condition characterized by a small head and brain [1]. And Zika’s disturbing march may not stop there.

In a new study in the journal The Lancet, infectious disease modelers calculate that Zika virus has the potential to spread across warmer and wetter parts of the Western Hemisphere as local mosquitoes pick up the virus from infected travelers and then spread the virus to other people [2]. The study suggests that Zika virus could eventually reach regions of the United States in which 60 percent of our population lives. This highlights the need for NIH and its partners in the public and private sectors to intensify research on Zika virus and to look for new ways to treat the disease and prevent its spread.


Neuroscience Research Kicks Off World Cup

Posted on by

Dr. Collins' visit to Miguel Nicolelis' lab space in Brazil

Caption: During my recent trip to Brazil, I visited the lab of neuroscientist Miguel Nicolelis to check out the device that he and his colleagues unveiled at the FIFA World Cup opening ceremony.
Credits: Fogarty International Center, FIFA World Cup, Walk Again Project

More than a billion people all around the globe got their first look at cutting edge neuroscience research in action today when a paraplegic youth wearing a thought-controlled, robotic exoskeleton kicked a ball to launch the 2014 FIFA World Cup opening ceremony in São Paulo, Brazil.

While much work remains before this or similar devices become widely available to people with paralysis, today’s moment does provide an inspiring glimpse of just one of the many things that can be achieved when science is supported over the long haul. In fact, the dramatic debut of this robotic exoskeleton was grounded in more than 20 years of scientific studies, including basic research supported by NIH and clinical research funded by the Brazilian government.


Previous Page